torch.jit.script#
- torch.jit.script(obj, optimize=None, _frames_up=0, _rcb=None, example_inputs=None)[source]#
Script the function.
Scripting a function or
nn.Modulewill inspect the source code, compile it as TorchScript code using the TorchScript compiler, and return aScriptModuleorScriptFunction. TorchScript itself is a subset of the Python language, so not all features in Python work, but we provide enough functionality to compute on tensors and do control-dependent operations. For a complete guide, see the TorchScript Language Reference.Scripting a dictionary or list copies the data inside it into a TorchScript instance than can be subsequently passed by reference between Python and TorchScript with zero copy overhead.
torch.jit.scriptcan be used as a function for modules, functions, dictionaries and listsand as a decorator
@torch.jit.scriptfor torchscript-classes and functions.
- Parameters
obj (Callable, class, or nn.Module) – The
nn.Module, function, class type, dictionary, or list to compile.example_inputs (Union[List[Tuple], Dict[Callable, List[Tuple]], None]) – Provide example inputs to annotate the arguments for a function or
nn.Module.
- Returns
If
objisnn.Module,scriptreturns aScriptModuleobject. The returnedScriptModulewill have the same set of sub-modules and parameters as the originalnn.Module. Ifobjis a standalone function, aScriptFunctionwill be returned. Ifobjis adict, thenscriptreturns an instance of torch._C.ScriptDict. Ifobjis alist, thenscriptreturns an instance of torch._C.ScriptList.
- Scripting a function
The
@torch.jit.scriptdecorator will construct aScriptFunctionby compiling the body of the function.Example (scripting a function):
import torch @torch.jit.script def foo(x, y): if x.max() > y.max(): r = x else: r = y return r print(type(foo)) # torch.jit.ScriptFunction # See the compiled graph as Python code print(foo.code) # Call the function using the TorchScript interpreter foo(torch.ones(2, 2), torch.ones(2, 2))
- **Scripting a function using example_inputs
Example inputs can be used to annotate a function arguments.
Example (annotating a function before scripting):
import torch def test_sum(a, b): return a + b # Annotate the arguments to be int scripted_fn = torch.jit.script(test_sum, example_inputs=[(3, 4)]) print(type(scripted_fn)) # torch.jit.ScriptFunction # See the compiled graph as Python code print(scripted_fn.code) # Call the function using the TorchScript interpreter scripted_fn(20, 100)
- Scripting an nn.Module
Scripting an
nn.Moduleby default will compile theforwardmethod and recursively compile any methods, submodules, and functions called byforward. If ann.Moduleonly uses features supported in TorchScript, no changes to the original module code should be necessary.scriptwill constructScriptModulethat has copies of the attributes, parameters, and methods of the original module.Example (scripting a simple module with a Parameter):
import torch class MyModule(torch.nn.Module): def __init__(self, N, M): super().__init__() # This parameter will be copied to the new ScriptModule self.weight = torch.nn.Parameter(torch.rand(N, M)) # When this submodule is used, it will be compiled self.linear = torch.nn.Linear(N, M) def forward(self, input): output = self.weight.mv(input) # This calls the `forward` method of the `nn.Linear` module, which will # cause the `self.linear` submodule to be compiled to a `ScriptModule` here output = self.linear(output) return output scripted_module = torch.jit.script(MyModule(2, 3))
Example (scripting a module with traced submodules):
import torch import torch.nn as nn import torch.nn.functional as F class MyModule(nn.Module): def __init__(self) -> None: super().__init__() # torch.jit.trace produces a ScriptModule's conv1 and conv2 self.conv1 = torch.jit.trace(nn.Conv2d(1, 20, 5), torch.rand(1, 1, 16, 16)) self.conv2 = torch.jit.trace(nn.Conv2d(20, 20, 5), torch.rand(1, 20, 16, 16)) def forward(self, input): input = F.relu(self.conv1(input)) input = F.relu(self.conv2(input)) return input scripted_module = torch.jit.script(MyModule())
To compile a method other than
forward(and recursively compile anything it calls), add the@torch.jit.exportdecorator to the method. To opt out of compilation use@torch.jit.ignoreor@torch.jit.unused.Example (an exported and ignored method in a module):
import torch import torch.nn as nn class MyModule(nn.Module): def __init__(self) -> None: super().__init__() @torch.jit.export def some_entry_point(self, input): return input + 10 @torch.jit.ignore def python_only_fn(self, input): # This function won't be compiled, so any # Python APIs can be used import pdb pdb.set_trace() def forward(self, input): if self.training: self.python_only_fn(input) return input * 99 scripted_module = torch.jit.script(MyModule()) print(scripted_module.some_entry_point(torch.randn(2, 2))) print(scripted_module(torch.randn(2, 2)))
Example ( Annotating forward of nn.Module using example_inputs):
import torch import torch.nn as nn from typing import NamedTuple class MyModule(NamedTuple): result: List[int] class TestNNModule(torch.nn.Module): def forward(self, a) -> MyModule: result = MyModule(result=a) return result pdt_model = TestNNModule() # Runs the pdt_model in eager model with the inputs provided and annotates the arguments of forward scripted_model = torch.jit.script(pdt_model, example_inputs={pdt_model: [([10, 20, ], ), ], }) # Run the scripted_model with actual inputs print(scripted_model([20]))