torch.max#
- torch.max(input, *, out=None) Tensor#
Returns the maximum value of all elements in the
inputtensor.Note
- The difference between
max/minandamax/aminis: amax/aminsupports reducing on multiple dimensions,amax/amindoes not return indices.
Both
amax/aminevenly distribute gradients between equal values when there are multiple input elements with the same minimum or maximum value.- For
max/min: If reduce over all dimensions(no dim specified), gradients evenly distribute between equally
max/minvalues.If reduce over one specified axis, only propagate to the indexed element.
- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[ 0.6763, 0.7445, -2.2369]]) >>> torch.max(a) tensor(0.7445)
- torch.max(input, dim, keepdim=False, *, out=None)
Returns a namedtuple
(values, indices)wherevaluesis the maximum value of each row of theinputtensor in the given dimensiondim. Andindicesis the index location of each maximum value found (argmax).If
keepdimisTrue, the output tensors are of the same size asinputexcept in the dimensiondimwhere they are of size 1. Otherwise,dimis squeezed (seetorch.squeeze()), resulting in the output tensors having 1 fewer dimension thaninput.Note
If there are multiple maximal values in a reduced row then the indices of the first maximal value are returned.
- Parameters
- Keyword Arguments
out (tuple, optional) – the result tuple of two output tensors (max, max_indices)
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[-1.2360, -0.2942, -0.1222, 0.8475], [ 1.1949, -1.1127, -2.2379, -0.6702], [ 1.5717, -0.9207, 0.1297, -1.8768], [-0.6172, 1.0036, -0.6060, -0.2432]]) >>> torch.max(a, 1) torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1])) >>> a = torch.tensor([[1.0, 2.0], [3.0, 4.0]]) >>> a.max(dim=1, keepdim=True) torch.return_types.max( values=tensor([[2.], [4.]]), indices=tensor([[1], [1]])) >>> a.max(dim=1, keepdim=False) torch.return_types.max( values=tensor([2., 4.]), indices=tensor([1, 1]))
- torch.max(input, other, *, out=None) Tensor
See
torch.maximum().- The difference between