torch.randint#
- torch.randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) Tensor#
Returns a tensor filled with random integers generated uniformly between
low(inclusive) andhigh(exclusive).The shape of the tensor is defined by the variable argument
size.Note
With the global dtype default (
torch.float32), this function returns a tensor with dtypetorch.int64.- Parameters
- Keyword Arguments
generator (
torch.Generator, optional) – a pseudorandom number generator for samplingout (Tensor, optional) – the output tensor.
dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if
None, this function returns a tensor with dtypetorch.int64.layout (
torch.layout, optional) – the desired layout of returned Tensor. Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor. Default: ifNone, uses the current device for the default tensor type (seetorch.set_default_device()).devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False.
Example:
>>> torch.randint(3, 5, (3,)) tensor([4, 3, 4]) >>> torch.randint(10, (2, 2)) tensor([[0, 2], [5, 5]]) >>> torch.randint(3, 10, (2, 2)) tensor([[4, 5], [6, 7]])