torch.sum#
- torch.sum(input, *, dtype=None) Tensor#
Returns the sum of all elements in the
inputtensor.- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
dtype (
torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is casted todtypebefore the operation is performed. This is useful for preventing data type overflows. Default: None.
Note
Use the dtype argument if you need the result in a specific tensor type. Otherwise, the result type may be automatically promoted (e.g., from torch.int32 to torch.int64).
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[ 0.1133, -0.9567, 0.2958]]) >>> torch.sum(a) tensor(-0.5475)
- torch.sum(input, dim, keepdim=False, *, dtype=None) Tensor
Returns the sum of each row of the
inputtensor in the given dimensiondim. Ifdimis a list of dimensions, reduce over all of them.If
keepdimisTrue, the output tensor is of the same size asinputexcept in the dimension(s)dimwhere it is of size 1. Otherwise,dimis squeezed (seetorch.squeeze()), resulting in the output tensor having 1 (orlen(dim)) fewer dimension(s).- Parameters
- Keyword Arguments
dtype (
torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is casted todtypebefore the operation is performed. This is useful for preventing data type overflows. Default: None.
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[ 0.0569, -0.2475, 0.0737, -0.3429], [-0.2993, 0.9138, 0.9337, -1.6864], [ 0.1132, 0.7892, -0.1003, 0.5688], [ 0.3637, -0.9906, -0.4752, -1.5197]]) >>> torch.sum(a, 1) tensor([-0.4598, -0.1381, 1.3708, -2.6217]) >>> b = torch.arange(4 * 5 * 6).view(4, 5, 6) >>> torch.sum(b, (2, 1)) tensor([ 435., 1335., 2235., 3135.])