KEMBAR78
[TRTLLM-4500][feat] Add serialization/deserialization options for AutoTuner profiling cache by hyukn · Pull Request #7738 · NVIDIA/TensorRT-LLM · GitHub
Skip to content

Conversation

@hyukn
Copy link
Collaborator

@hyukn hyukn commented Sep 15, 2025

Summary by CodeRabbit

  • New Features

    • Persistent, rank-aware autotuning cache with JSON save/load for faster reuse across runs.
    • Per-rank cache files and environment-variable-based cache path support.
    • Improved cache lookups for non-tuning runs to reduce overhead.
    • Multi-rank integration in the model engine to leverage per-rank caches.
  • Bug Fixes

    • More robust handling of None and non-tensor inputs during input size collection.
    • Enhanced logging to include timing details from cached profiles.
  • Tests

    • Added coverage for cache persistence and new cache query APIs.

Description

To achieve determinism for the AutoTuner profiling cache, serialization and deserialization are introduced to store the cache on disk in JSON format.

Use TLLM_AUTOTUNER_CACHE_PATH to indicate the path where the cache file should be stored:

  • If the file already exists, the model engine will skip the warm-up phase for AutoTuner. The JSON file will be deserialized and loaded into the profiling cache.
  • If the file does not exist, the warm-up tuning process will be triggered. And after the profiling cache is filled, it will be serialized to disk with the given file name plus the rank number suffix.
  • If this variable is not defined, the tuning process will always happen without any serialization/deserialization.

Test Coverage

PR Checklist

Please review the following before submitting your PR:

  • PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.

  • PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.

  • Test cases are provided for new code paths (see test instructions)

  • Any new dependencies have been scanned for license and vulnerabilities

  • CODEOWNERS updated if ownership changes

  • Documentation updated as needed

  • The reviewers assigned automatically/manually are appropriate for the PR.

  • Please check this after reviewing the above items as appropriate for this PR.

GitHub Bot Help

/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...

Provide a user friendly way for developers to interact with a Jenkins server.

Run /bot [-h|--help] to print this help message.

See details below for each supported subcommand.

run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]

Launch build/test pipelines. All previously running jobs will be killed.

--reuse-test (optional)pipeline-id (OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.

--disable-reuse-test (OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.

--disable-fail-fast (OPTIONAL) : Disable fail fast on build/tests/infra failures.

--skip-test (OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.

--stage-list "A10-PyTorch-1, xxx" (OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.

--gpu-type "A30, H100_PCIe" (OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.

--test-backend "pytorch, cpp" (OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.

--only-multi-gpu-test (OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.

--disable-multi-gpu-test (OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.

--add-multi-gpu-test (OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.

--post-merge (OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.

--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" (OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".

--detailed-log (OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.

--debug (OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in the stage-list parameter to access the appropriate container environment. Note: Does NOT update GitHub check status.

For guidance on mapping tests to stage names, see docs/source/reference/ci-overview.md
and the scripts/test_to_stage_mapping.py helper.

kill

kill

Kill all running builds associated with pull request.

skip

skip --comment COMMENT

Skip testing for latest commit on pull request. --comment "Reason for skipping build/test" is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

reuse-pipeline

reuse-pipeline

Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

@hyukn hyukn requested review from djns99 and litaotju September 15, 2025 14:08
@hyukn hyukn requested review from a team as code owners September 15, 2025 14:08
@hyukn
Copy link
Collaborator Author

hyukn commented Sep 15, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #18649 [ run ] triggered by Bot

@coderabbitai
Copy link
Contributor

coderabbitai bot commented Sep 15, 2025

📝 Walkthrough

Walkthrough

Implements a persistent, rank-scoped autotuning cache and integrates it into the autotuning flow. Adds JSON load/save, new cache APIs, updates non-tuning/tuning paths to use the cache, modifies profiling return values, and wires per-rank cache usage from model engine. Tests updated for new APIs and persistence.

Changes

Cohort / File(s) Summary
Autotuner cache and flow
tensorrt_llm/_torch/autotuner.py
Adds AutoTunerProfilingCache with JSON persistence, rank-aware cache files, new cache APIs (get_cache_key, search_cache, save/load). Replaces in-memory dict. Updates autotune signature (tune_mode, cache_path, rank). Changes non-tuning/tuning paths to use cache. Adjusts _profile_runners to return min_time. Cleans up legacy helpers and logging.
Engine integration
tensorrt_llm/_torch/pyexecutor/model_engine.py
release_batch now calls autotune with cache_path (env TLLM_AUTOTUNER_CACHE_PATH) and rank (self.mapping.rank) for per-rank caching.
Tests
tests/unittest/_torch/misc/test_autotuner.py
Updates to use profiling_cache.get_cache_key and get_specific_custom_op. Adds save/load persistence checks. Removes reliance on old AutoTuner._get_cache_key and direct key iteration.

Sequence Diagram(s)

sequenceDiagram
  autonumber
  actor User
  participant ModelEngine as PyTorchModelEngine
  participant AutoTuner
  participant Cache as ProfilingCache
  participant Disk as JSON File (.rank{r}.json)

  User->>ModelEngine: release_batch(...)
  ModelEngine->>AutoTuner: autotune(tune_mode, cache_path, rank)
  alt cache_path provided
    AutoTuner->>Cache: load_cache(cache_path.rank{rank})
    Cache->>Disk: Read JSON (if exists)
    Disk-->>Cache: Cache entries (optional)
  end

  AutoTuner->>Cache: search_cache(custom_op, runners, shapes, cfg)
  alt Cache hit (non-tuning)
    Cache-->>AutoTuner: (runner_id, tactic, min_time)
    AutoTuner-->>ModelEngine: Use cached selection
  else Cache miss or tuning enabled
    AutoTuner->>AutoTuner: _profile_runners(...) -> (best_runner_id, best_tactic, min_time, failure?)
    AutoTuner->>Cache: cache[cache_key]= (best_runner_id, best_tactic, min_time)
    alt cache_path provided
      Cache->>Disk: Write JSON
    end
    AutoTuner-->>ModelEngine: Use profiled selection
  end
Loading

Estimated code review effort

🎯 4 (Complex) | ⏱️ ~60 minutes

✨ Finishing touches
  • 📝 Generate Docstrings
🧪 Generate unit tests
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Tip

👮 Agentic pre-merge checks are now available in preview!

Pro plan users can now enable pre-merge checks in their settings to enforce checklists before merging PRs.

  • Built-in checks – Quickly apply ready-made checks to enforce title conventions, require pull request descriptions that follow templates, validate linked issues for compliance, and more.
  • Custom agentic checks – Define your own rules using CodeRabbit’s advanced agentic capabilities to enforce organization-specific policies and workflows. For example, you can instruct CodeRabbit’s agent to verify that API documentation is updated whenever API schema files are modified in a PR. Note: Upto 5 custom checks are currently allowed during the preview period. Pricing for this feature will be announced in a few weeks.

Please see the documentation for more information.

Example:

reviews:
  pre_merge_checks:
    custom_checks:
      - name: "Undocumented Breaking Changes"
        mode: "warning"
        instructions: |
          Pass/fail criteria: All breaking changes to public APIs, CLI flags, environment variables, configuration keys, database schemas, or HTTP/GraphQL endpoints must be documented in the "Breaking Change" section of the PR description and in CHANGELOG.md. Exclude purely internal or private changes (e.g., code not exported from package entry points or explicitly marked as internal).

Please share your feedback with us on this Discord post.


Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Pre-merge checks

❌ Failed checks (1 warning)
Check name Status Explanation Resolution
Docstring Coverage ⚠️ Warning Docstring coverage is 42.31% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
✅ Passed checks (2 passed)
Check name Status Explanation
Title Check ✅ Passed The title "[TRTLLM-4500][feat] Add serialization/deserialization options for AutoTuner profiling cache" is concise, follows the repository's ticket/type convention, and accurately summarizes the primary change (adding JSON persistence for the AutoTuner profiling cache and related API updates), so it gives a reviewer a clear idea of the main intent.
Description Check ✅ Passed The PR description clearly states the purpose (deterministic AutoTuner profiling cache), summarizes the solution (JSON serialization/deserialization with rank-suffixed cache files), and documents how to use TLLM_AUTOTUNER_CACHE_PATH, satisfying the Description section of the template. The repository PR template is included in the body. However, the Test Coverage section is empty and the PR does not enumerate which tests or files cover the changes, leaving required test information incomplete.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 3

Caution

Some comments are outside the diff and can’t be posted inline due to platform limitations.

⚠️ Outside diff range comments (5)
tensorrt_llm/_torch/pyexecutor/model_engine.py (2)

1-1: Add required NVIDIA Apache-2.0 header (2025).

Apply:

+# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
 import bisect

842-847: Avoid re-tuning during CUDA graph warmup; reuse the same cache.

This second autotune() runs with default tune_mode=True and no cache path; it may re-profile and won’t persist. Reuse env cache path and rank.

Apply:

-                    if self.pytorch_backend_config.enable_autotuner:
-                        with self.no_cuda_graph(), autotune():
+                    if self.pytorch_backend_config.enable_autotuner:
+                        cache_path = os.environ.get("TLLM_AUTOTUNER_CACHE_PATH", None)
+                        with self.no_cuda_graph(), autotune(cache_path=cache_path, rank=self.mapping.rank):
tests/unittest/_torch/misc/test_autotuner.py (3)

1-1: Add required NVIDIA Apache-2.0 header (2025).

Apply:

+# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
 from typing import Dict, List

141-146: Coerce 0-D Tensor to int before comparisons.

check_gemm_tactic_valid expects int; passing a Tensor will error in boolean context.

Apply:

-        best_tactic = torch.ops.autotuner_test.get_best_gemm_tactic(
-            torch.randn(m, 64), w)
-        check_gemm_tactic_valid(best_tactic, m)
+        best_tactic = torch.ops.autotuner_test.get_best_gemm_tactic(torch.randn(m, 64), w)
+        check_gemm_tactic_valid(int(best_tactic.item()), m)

216-219: Same issue: convert Tensors to ints.

Apply:

-        t1, t2 = torch.ops.autotuner_test.recursive_get_best_gemm_tactic(
-            torch.randn(m, 64), w1, w2)
-        check_gemm_tactic_valid(t1, m)
-        check_gemm_tactic_valid(t2, m)
+        t1, t2 = torch.ops.autotuner_test.recursive_get_best_gemm_tactic(torch.randn(m, 64), w1, w2)
+        check_gemm_tactic_valid(int(t1.item()), m)
+        check_gemm_tactic_valid(int(t2.item()), m)
🧹 Nitpick comments (6)
tensorrt_llm/_torch/autotuner.py (5)

332-344: search_cache signature/docs mismatch the actual return.

Currently returns (bool, int, Any, float). Update hints/docstring accordingly.

Apply:

-    ) -> Tuple[bool, int, int, Dict[str, Any], OptimizationProfile]:
+    ) -> Tuple[bool, int, Any, float]:
@@
-        Returns:
-            A tuple containing:
-            [is_cache_hit, runner_id, tactic, stored_profile]
+        Returns:
+            (is_cache_hit, runner_id, tactic, min_time)

370-372: Return type of get_specific_custom_op is incorrect.

It returns a dict, not a tuple.

Apply:

-    def get_specific_custom_op(self, custom_op: str) -> Tuple:
+    def get_specific_custom_op(self, custom_op: str) -> Dict[Tuple, Tuple]:

630-687: _profile_runners return type annotation is wrong.

Function returns 4-tuple, not float.

Apply:

-    ) -> float:
+    ) -> Tuple[Optional[int], Any, float, bool]:

Also ensure Optional is imported:

-from typing import Any, Callable, Dict, List, Set, Tuple, Union
+from typing import Any, Callable, Dict, List, Set, Tuple, Union, Optional

351-369: Runner identity via hash may break for unhashable attributes.

hash(tuple(self.dict.values())) will TypeError if any value is unhashable (e.g., list/dict/tensor). Consider a safer identity.

Example:

-            runner.__class__.__name__,
-            hash(runner),
+            runner.__class__.__name__,
+            hash(tuple((k, repr(v)) for k, v in runner.__dict__.items())),

90-97: Use Optional[int] for tune_max_num_tokens.

Aligns with PEP 484 (RUF013).

Apply:

-    tune_max_num_tokens: int = None
+    tune_max_num_tokens: Optional[int] = None
tests/unittest/_torch/misc/test_autotuner.py (1)

307-314: Use secure temp path instead of hardcoded /tmp (S108).

Leverage TemporaryDirectory for portability and cleanup.

Apply:

-    cache_path = "/tmp/test_multiple_dynamic_shapes.json"
-    AutoTuner.get().profiling_cache.save_cache(cache_path)
-    # clear cache to test the load_cache functionality
-    AutoTuner.get().profiling_cache.clear()
-    AutoTuner.get().profiling_cache.load_cache(cache_path)
+    import os, tempfile
+    with tempfile.TemporaryDirectory() as tmpdir:
+        cache_path = os.path.join(tmpdir, "test_multiple_dynamic_shapes.json")
+        AutoTuner.get().profiling_cache.save_cache(cache_path)
+        AutoTuner.get().profiling_cache.clear()
+        AutoTuner.get().profiling_cache.load_cache(cache_path)
         cache_entries = tuner.profiling_cache.get_specific_custom_op(
             "test_multiple_dynamic_shapes")
📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 7deefb3 and ed9e69b.

📒 Files selected for processing (3)
  • tensorrt_llm/_torch/autotuner.py (11 hunks)
  • tensorrt_llm/_torch/pyexecutor/model_engine.py (1 hunks)
  • tests/unittest/_torch/misc/test_autotuner.py (2 hunks)
🧰 Additional context used
📓 Path-based instructions (3)
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Use only spaces, no tabs; indent with 4 spaces.

Files:

  • tensorrt_llm/_torch/pyexecutor/model_engine.py
  • tests/unittest/_torch/misc/test_autotuner.py
  • tensorrt_llm/_torch/autotuner.py
**/*.py

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.py: Python code must target Python 3.8+.
Indent Python code with 4 spaces; do not use tabs.
Maintain module namespace when importing; prefer 'from package.subpackage import foo' then 'foo.SomeClass()' instead of importing the class directly.
Python filenames should be snake_case (e.g., some_file.py).
Python classes use PascalCase names.
Functions and methods use snake_case names.
Local variables use snake_case; prefix 'k' for variables that start with a number (e.g., k_99th_percentile).
Global variables use upper SNAKE_CASE prefixed with 'G' (e.g., G_MY_GLOBAL).
Constants use upper SNAKE_CASE (e.g., MY_CONSTANT).
Avoid shadowing variables from an outer scope.
Initialize all externally visible members of a class in the constructor.
Prefer docstrings for interfaces that may be used outside a file; comments for in-function or file-local interfaces.
Use Google-style docstrings for classes and functions (Sphinx-parsable).
Document attributes and variables inline so they render under the class/function docstring.
Avoid reflection when a simpler, explicit approach suffices (e.g., avoid dict(**locals()) patterns).
In try/except, catch the most specific exceptions possible.
For duck-typing try/except, keep the try body minimal and use else for the main logic.

Files:

  • tensorrt_llm/_torch/pyexecutor/model_engine.py
  • tests/unittest/_torch/misc/test_autotuner.py
  • tensorrt_llm/_torch/autotuner.py
**/*.{cpp,cxx,cc,h,hpp,hh,hxx,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Prepend the NVIDIA Apache-2.0 copyright header with current year to the top of all source files (e.g., .cpp, .h, .cu, .py).

Files:

  • tensorrt_llm/_torch/pyexecutor/model_engine.py
  • tests/unittest/_torch/misc/test_autotuner.py
  • tensorrt_llm/_torch/autotuner.py
🧠 Learnings (1)
📚 Learning: 2025-08-19T12:45:11.997Z
Learnt from: amitz-nv
PR: NVIDIA/TensorRT-LLM#7033
File: tensorrt_llm/_torch/pyexecutor/model_engine.py:0-0
Timestamp: 2025-08-19T12:45:11.997Z
Learning: In tensorrt_llm/_torch/pyexecutor/model_engine.py, DoRA (Delta Orthogonal Rank Adaptation) functionality was removed from the PyTorch flow to eliminate issues with inverted DoRA detection logic. The original is_dora condition was checking if scaling_vec_pointer == 0, which was potentially incorrect.

Applied to files:

  • tensorrt_llm/_torch/pyexecutor/model_engine.py
🧬 Code graph analysis (3)
tensorrt_llm/_torch/pyexecutor/model_engine.py (2)
tensorrt_llm/_torch/autotuner.py (2)
  • get (516-519)
  • autotune (208-242)
tensorrt_llm/mapping.py (2)
  • rank (324-325)
  • rank (328-335)
tests/unittest/_torch/misc/test_autotuner.py (1)
tensorrt_llm/_torch/autotuner.py (7)
  • get_cache_key (351-368)
  • AutoTuner (489-931)
  • get (516-519)
  • save_cache (373-398)
  • clear (319-320)
  • load_cache (400-427)
  • get_specific_custom_op (370-371)
tensorrt_llm/_torch/autotuner.py (1)
tensorrt_llm/logger.py (4)
  • info (138-139)
  • error (126-127)
  • warning (132-133)
  • debug (144-145)
🪛 Ruff (0.12.2)
tests/unittest/_torch/misc/test_autotuner.py

307-307: Probable insecure usage of temporary file or directory: "/tmp/test_multiple_dynamic_shapes.json"

(S108)

tensorrt_llm/_torch/autotuner.py

208-208: PEP 484 prohibits implicit Optional

Convert to Optional[T]

(RUF013)


416-416: Avoid specifying long messages outside the exception class

(TRY003)

⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
  • GitHub Check: Pre-commit Check
🔇 Additional comments (5)
tensorrt_llm/_torch/autotuner.py (4)

688-695: _get_input_sizes: LGTM.

Graceful handling for None/non-Tensor inputs is correct and consistent with nearest-profile logic.


298-306: Good separation of concerns with AutoTunerProfilingCache.

Clear API and persistence helpers improve modularity.


372-399: Robust, readable JSON persistence.

Using Path.parent.mkdir and default=str is appropriate.


556-566: logger.warning_once exists — no change required.
Defined in tensorrt_llm/logger.py (line ~135) as a wrapper to log_once; the autotuner call is valid.

tensorrt_llm/_torch/pyexecutor/model_engine.py (1)

784-787: Pass cache_path/rank consistently to autotune.

Good integration here.

Copy link
Collaborator

@djns99 djns99 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this is an ok starting point, but I would like to use this opportunity to properly unify the tuning across all ranks. I consider it a bug if we have different configs on each rank.
Except maybe for pipeline parallel, any differences will just cause a communication bubble

@tensorrt-cicd
Copy link
Collaborator

PR_Github #18649 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #14006 completed with status: 'FAILURE'

@hyukn hyukn force-pushed the feat/autotuning_deterministic branch from ed9e69b to 16f814e Compare September 17, 2025 06:22
@hyukn
Copy link
Collaborator Author

hyukn commented Sep 17, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #18912 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #18912 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #14178 completed with status: 'FAILURE'

@hyukn hyukn force-pushed the feat/autotuning_deterministic branch from 16f814e to 707abf0 Compare September 18, 2025 02:30
@hyukn
Copy link
Collaborator Author

hyukn commented Sep 18, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #19092 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #19092 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #14322 completed with status: 'FAILURE'

@hyukn
Copy link
Collaborator Author

hyukn commented Sep 19, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #19235 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #19235 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #14444 completed with status: 'SUCCESS'
Pipeline passed with automatic retried tests. Check the rerun report for details.

@hyukn hyukn force-pushed the feat/autotuning_deterministic branch from 707abf0 to 7fd9f99 Compare September 25, 2025 12:35
@hyukn
Copy link
Collaborator Author

hyukn commented Sep 25, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #19952 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #19952 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #15021 completed with status: 'FAILURE'

@hyukn hyukn force-pushed the feat/autotuning_deterministic branch 2 times, most recently from f4496c1 to 16b5e72 Compare September 26, 2025 01:24
@hyukn
Copy link
Collaborator Author

hyukn commented Sep 26, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20010 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20010 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #15073 completed with status: 'FAILURE'

@hyukn
Copy link
Collaborator Author

hyukn commented Sep 26, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20037 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20037 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #15094 completed with status: 'FAILURE'

@hyukn hyukn force-pushed the feat/autotuning_deterministic branch from 16b5e72 to 0e8a2b8 Compare September 26, 2025 07:56
@hyukn
Copy link
Collaborator Author

hyukn commented Sep 26, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20066 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20066 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #15117 completed with status: 'FAILURE'

@hyukn hyukn force-pushed the feat/autotuning_deterministic branch from 0e8a2b8 to cf71c44 Compare September 26, 2025 13:02
@hyukn
Copy link
Collaborator Author

hyukn commented Sep 26, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20095 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20095 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #15141 completed with status: 'FAILURE'

@hyukn
Copy link
Collaborator Author

hyukn commented Sep 28, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20151 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20151 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #15192 completed with status: 'FAILURE'

…oTuner profiling cache.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
@hyukn hyukn force-pushed the feat/autotuning_deterministic branch from cf71c44 to 7499641 Compare September 28, 2025 12:23
@hyukn
Copy link
Collaborator Author

hyukn commented Sep 28, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20172 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #20172 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #15210 completed with status: 'SUCCESS'

@hyukn hyukn merged commit 28b9a81 into NVIDIA:main Sep 28, 2025
5 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants