This is a reimplementaion of the neural vocoder in DIFFWAVE: A VERSATILE DIFFUSION MODEL FOR AUDIO SYNTHESIS.
-
To continue training the model, run
python distributed_train.py -c config_${channel}.json, where${channel}can be either64or128. -
To retrain the model, change the parameter
ckpt_iterin the correspondingjsonfile to-1and use the above command. -
To generate audio, run
python inference.py -c config_${channel}.json -cond ${conditioner_name}. For example, if the name of the mel spectrogram isLJ001-0001.wav.pt, then${conditioner_name}isLJ001-0001. Provided mel spectrograms includeLJ001-0001throughLJ001-0186. -
Note, you may need to carefully adjust some parameters in the
jsonfile, such asdata_pathandbatch_size_per_gpu.