-
Notifications
You must be signed in to change notification settings - Fork 25.7k
Description
🐛 Describe the bug
according to documentation (https://pytorch.org/docs/stable/generated/torch.as_strided.html), "as_strided" should override the existing strides and offset of the tensor storage (as opposed to other view operations which are composite in nature).
Thus, when functionalizating as_strided, we should not add it on top of previous view operations.
This issue leads to incorrect results of torch.compile.
reproducer:
- note that when not using a custom compiler, then torch fails to compile all together
- using core_aten_decompositions doesn't change the issue
import torch
import torch._dynamo
import logging
import numpy as np
import torchvision.models as models
from torch._dynamo.backends.common import aot_autograd
from torch._decomp import core_aten_decompositions
print(torch.__version__)
def main():
def inner_compiler(gm: torch.fx.GraphModule, example_inputs):
gm.graph.print_tabular()
return gm.forward
def foo(a):
e = a.diagonal()
f = e.as_strided((2,), (1,), 0)
f.add_(1.0)
return a
a = torch.randn(2, 4)
a_ref = a.clone()
torch._dynamo.reset()
aot_backend = aot_autograd(fw_compiler=inner_compiler)#, decompositions=core_aten_decompositions())
compiled_model = torch.compile(foo, dynamic=True, backend=aot_backend)
out_ref = foo(a_ref)
print(out_ref)
out = compiled_model(a)
print(out)
print(out == out_ref)
main()
Error logs
when not using custom compiler:
AttributeError Traceback (most recent call last)
/usr/local/lib/python3.10/dist-packages/torch/_dynamo/output_graph.py in call_user_compiler(self, gm)
669 else:
--> 670 compiled_fn = compiler_fn(gm, self.fake_example_inputs())
671 _step_logger()(logging.INFO, f"done compiler function {name}")
42 frames
AttributeError: The underlying op of 'aten.sym_storage_offset' has no overload name 'name'
While executing %sym_storage_offset : [#users=3] = call_function[target=torch.ops.aten.sym_storage_offset](args = (%arg0_1,), kwargs = {})
Original traceback:
File "", line 18, in foo
e = a.diagonal()
The above exception was the direct cause of the following exception:
BackendCompilerFailed Traceback (most recent call last)
/usr/local/lib/python3.10/dist-packages/torch/_dynamo/output_graph.py in call_user_compiler(self, gm)
673 except Exception as e:
674 compiled_fn = gm.forward
--> 675 raise BackendCompilerFailed(self.compiler_fn, e) from e
676 return compiled_fn
677
BackendCompilerFailed: debug_wrapper raised AttributeError: The underlying op of 'aten.sym_storage_offset' has no overload name 'name'
While executing %sym_storage_offset : [#users=3] = call_function[target=torch.ops.aten.sym_storage_offset](args = (%arg0_1,), kwargs = {})
Original traceback:
File "", line 18, in foo
e = a.diagonal()
Set torch._dynamo.config.verbose=True for more information
You can suppress this exception and fall back to eager by setting:
torch._dynamo.config.suppress_errors = True
Minified repro
No response
Versions
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 21676 100 21676 0 0 102k 0 --:--:-- --:--:-- --:--:-- 102k
Collecting environment information...
PyTorch version: 2.0.1+cu118
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Clang version: 10.0.0-4ubuntu1
CMake version: version 3.25.2
Libc version: glibc-2.31
Python version: 3.10.12 (main, Jun 7 2023, 12:45:35) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.15.107+-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: Tesla T4
Nvidia driver version: 525.85.12
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 2
On-line CPU(s) list: 0,1
Thread(s) per core: 2
Core(s) per socket: 1
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) CPU @ 2.00GHz
Stepping: 3
CPU MHz: 2000.144
BogoMIPS: 4000.28
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32 KiB
L1i cache: 32 KiB
L2 cache: 1 MiB
L3 cache: 38.5 MiB
NUMA node0 CPU(s): 0,1
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable; SMT Host state unknown
Vulnerability Meltdown: Vulnerable
Vulnerability Mmio stale data: Vulnerable
Vulnerability Retbleed: Vulnerable
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat md_clear arch_capabilities
Versions of relevant libraries:
[pip3] numpy==1.22.4
[pip3] torch==2.0.1+cu118
[pip3] torchaudio==2.0.2+cu118
[pip3] torchdata==0.6.1
[pip3] torchsummary==1.5.1
[pip3] torchtext==0.15.2
[pip3] torchvision==0.15.2+cu118
[pip3] triton==2.0.0
[conda] Could not collect
cc @ezyang @gchanan @zou3519 @kadeng @svekars @brycebortree @msaroufim @bdhirsh @anijain2305 @chauhang @carljparker @wconstab