KEMBAR78
SDPA with nested tensor is not faster than non-nested · Issue #105913 · pytorch/pytorch · GitHub
Skip to content

SDPA with nested tensor is not faster than non-nested #105913

@fxmarty

Description

@fxmarty

🚀 The feature, motivation and pitch

Hi, I am trying SDPA + NestedTensor on 2.1.0.dev20230724+cu118 + A100 in the inference setting with batch size > 1. I read that SDPA supports nestedtensors, and I would expect it to be faster due to the absence of padding. To me nestedtensor is just an abstraction over a big tensor with relevant start indexes, end indexes, kind of matching with the API in https://github.com/Dao-AILab/flash-attention (that uses indexing rather than padding to handle batches).

However, from my tests, using NestedTensor is not faster, and actually even slower than non-nested.

Script:

import torch
import random

batch_size = 64
head_dim = 128
num_heads = 32

max_sequence_len = 512
pad_percentage = 0.4
seq_len_list = [
    int(max_sequence_len * (1 - random.gauss(pad_percentage, 0.01)))
    for _ in range(batch_size)
]
seq_len_list[6] = max_sequence_len
print("seq_len_list", seq_len_list)

query = torch.rand(batch_size, num_heads, 1, head_dim, dtype=torch.float16).to("cuda")
query = torch.nested.nested_tensor(list(query))
key = torch.nested.nested_tensor(
    [torch.rand(num_heads, seq_len, head_dim, dtype=torch.float16).to("cuda") for seq_len in seq_len_list]
)
value = torch.nested.nested_tensor(
    [torch.rand(num_heads, seq_len, head_dim, dtype=torch.float16).to("cuda") for seq_len in seq_len_list]
)
n_runs = 50

with torch.no_grad():
    with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=True, enable_mem_efficient=False):
        start_event = torch.cuda.Event(enable_timing=True)
        end_event = torch.cuda.Event(enable_timing=True)

        torch.cuda.empty_cache()
        torch.cuda.synchronize()

        start_event.record()
        for _ in range(n_runs):
            res = torch.nn.functional.scaled_dot_product_attention(query, key, value)
        end_event.record()
        torch.cuda.synchronize()

        tps = start_event.elapsed_time(end_event) / n_runs
        print("SDPA nested:", tps, "ms")

query = torch.rand(batch_size, num_heads, 1, head_dim, dtype=torch.float16).to("cuda")
key = torch.rand(batch_size, num_heads, max_sequence_len, head_dim, dtype=torch.float16).to("cuda")
value = torch.rand(batch_size, num_heads, max_sequence_len, head_dim, dtype=torch.float16).to("cuda")

with torch.no_grad():
    with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=True, enable_mem_efficient=False):
        start_event = torch.cuda.Event(enable_timing=True)
        end_event = torch.cuda.Event(enable_timing=True)

        torch.cuda.empty_cache()
        torch.cuda.synchronize()

        start_event.record()
        for _ in range(n_runs):
            res = torch.nn.functional.scaled_dot_product_attention(query, key, value)
        end_event.record()
        torch.cuda.synchronize()

        tps = start_event.elapsed_time(end_event) / n_runs
        print("SDPA non-nested:", tps, "ms")

Prints:

SDPA nested: 2.4578866577148437 ms
SDPA non-nested: 1.7974630737304687 ms

cc @cpuhrsch @jbschlosser @bhosmer @drisspg

Alternatives

Not using SDPA but directly https://github.com/Dao-AILab/flash-attention. That would be a shame though because it seems that NestedTensor is a relevant abstraction.

Additional context

PyTorch version: 2.1.0.dev20230724+cu118
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.5 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Clang version: Could not collect
CMake version: version 3.26.4
Libc version: glibc-2.31

Python version: 3.9.16 (main, May 15 2023, 23:46:34)  [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1023-aws-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 510.73.08
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   46 bits physical, 48 bits virtual
CPU(s):                          96
On-line CPU(s) list:             0-95
Thread(s) per core:              2
Core(s) per socket:              24
Socket(s):                       2
NUMA node(s):                    2
Vendor ID:                       GenuineIntel
CPU family:                      6
Model:                           85
Model name:                      Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
Stepping:                        7
CPU MHz:                         2999.998
BogoMIPS:                        5999.99
Hypervisor vendor:               KVM
Virtualization type:             full
L1d cache:                       1.5 MiB
L1i cache:                       1.5 MiB
L2 cache:                        48 MiB
L3 cache:                        71.5 MiB
NUMA node0 CPU(s):               0-23,48-71
NUMA node1 CPU(s):               24-47,72-95
Vulnerability Itlb multihit:     KVM: Mitigation: VMX unsupported
Vulnerability L1tf:              Mitigation; PTE Inversion
Vulnerability Mds:               Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown:          Mitigation; PTI
Vulnerability Mmio stale data:   Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:          Vulnerable
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke

Versions of relevant libraries:
[pip3] mypy-protobuf==3.4.0
[pip3] numpy==1.24.3
[pip3] pytorch-triton==2.1.0+9e3e10c5ed
[pip3] torch==2.1.0.dev20230724+cu118
[pip3] torchaudio==2.1.0.dev20230724+cu118
[pip3] torchvision==0.16.0.dev20230724+cu118
[pip3] triton==2.0.0
[conda] numpy                     1.24.3                   pypi_0    pypi
[conda] pytorch-triton            2.1.0+9e3e10c5ed          pypi_0    pypi
[conda] torch                     2.1.0.dev20230724+cu118          pypi_0    pypi
[conda] torchaudio                2.1.0.dev20230724+cu118          pypi_0    pypi
[conda] torchvision               0.16.0.dev20230724+cu118          pypi_0    pypi
[conda] triton                    2.0.0                    pypi_0    pypi

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions