KEMBAR78
`torch.load` can't deserialize `datetime` objects, even with the appropriate `safe_globals` · Issue #152985 · pytorch/pytorch · GitHub
Skip to content

torch.load can't deserialize datetime objects, even with the appropriate safe_globals #152985

@gtebbutt

Description

@gtebbutt

🐛 Describe the bug

Spent a while chasing this one down on the assumption that a custom class from my code was being inadvertently saved, especially with the earlier message requiring getattr to be added to safe_globals, but it turns out it'll happen on any output containing a datetime object:

import torch
import datetime
import zoneinfo

data = {
    "a": torch.tensor([1,2,3]),
    "b": datetime.datetime(2025, 1, 1, 12, 0, tzinfo=zoneinfo.ZoneInfo(key="UTC")),
}

torch.save(data, "data.pt")

with torch.serialization.safe_globals([datetime.datetime, getattr, zoneinfo.ZoneInfo]):
    torch.load("data.pt")
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
  File "/usr/local/lib/python3.12/site-packages/torch/serialization.py", line 1524, in load
    raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
_pickle.UnpicklingError: Weights only load failed. In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
Please file an issue with the following so that we can make `weights_only=True` compatible with your use case: WeightsUnpickler error: Trying to call reduce for unrecognized function <built-in method _unpickle of type object at 0x563383311d20>

Versions

Running in a container built from docker.io/python:3.12:

PyTorch version: 2.7.0+cu128
Is debug build: False
CUDA used to build PyTorch: 12.8
ROCM used to build PyTorch: N/A

OS: Debian GNU/Linux 12 (bookworm) (x86_64)
GCC version: (Debian 12.2.0-14) 12.2.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.36

Python version: 3.12.10 (main, Apr  9 2025, 00:29:37) [GCC 12.2.0] (64-bit runtime)
Python platform: Linux-6.12.26-x86_64-with-glibc2.36
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA GeForce RTX 5090

Nvidia driver version: 570.144
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               32
On-line CPU(s) list:                  0-31
Vendor ID:                            AuthenticAMD
Model name:                           AMD Ryzen 9 9950X 16-Core Processor
CPU family:                           26
Model:                                68
Thread(s) per core:                   2
Core(s) per socket:                   16
Socket(s):                            1
Stepping:                             0
Frequency boost:                      enabled
CPU(s) scaling MHz:                   31%
CPU max MHz:                          5752.0000
CPU min MHz:                          600.0000
BogoMIPS:                             8599.98
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx_vnni avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid bus_lock_detect movdiri movdir64b overflow_recov succor smca fsrm avx512_vp2intersect flush_l1d amd_lbr_pmc_freeze
Virtualization:                       AMD-V
L1d cache:                            768 KiB (16 instances)
L1i cache:                            512 KiB (16 instances)
L2 cache:                             16 MiB (16 instances)
L3 cache:                             64 MiB (2 instances)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-31
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==2.2.5
[pip3] nvidia-cublas-cu12==12.8.3.14
[pip3] nvidia-cuda-cupti-cu12==12.8.57
[pip3] nvidia-cuda-nvrtc-cu12==12.8.61
[pip3] nvidia-cuda-runtime-cu12==12.8.57
[pip3] nvidia-cudnn-cu12==9.7.1.26
[pip3] nvidia-cufft-cu12==11.3.3.41
[pip3] nvidia-curand-cu12==10.3.9.55
[pip3] nvidia-cusolver-cu12==11.7.2.55
[pip3] nvidia-cusparse-cu12==12.5.7.53
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.8.61
[pip3] nvidia-nvtx-cu12==12.8.55
[pip3] torch==2.7.0+cu128
[pip3] torchmetrics==1.7.1
[pip3] triton==3.3.0
[conda] Could not collect

cc @mruberry @mikaylagawarecki

Metadata

Metadata

Assignees

No one assigned

    Labels

    module: serializationIssues related to serialization (e.g., via pickle, or otherwise) of PyTorch objectstriagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions