KEMBAR78
Can we prune pre-trained model like VGG16 etc... using this optimization library · Issue #40 · tensorflow/model-optimization · GitHub
Skip to content

Can we prune pre-trained model like VGG16 etc... using this optimization library #40

@tejalal

Description

@tejalal

I tried to create a model like:

`def Vgg16():
    vgg16 = VGG16(include_top=False, 
                                           weights='imagenet',
                                           input_shape = (32, 32, 3))
    top_model = Sequential()
    top_model.add(Flatten(input_shape=vgg16.output_shape[1:]))
    top_model.add(Dense(512, activation='relu'))
    top_model.add(Dropout(0.5))
    top_model.add(Dense(256, activation='relu'))
    top_model.add(Dropout(0.5))
    top_model.add(Dense(10, activation='sigmoid'))
    model = Model(vgg16.input,top_model(vgg16.output))
    return model`

and when I call

`new_pruning_params = {
      'pruning_schedule': sparsity.PolynomialDecay(initial_sparsity=0.5,
                                                   final_sparsity=0.80,
                                                   begin_step=0,
                                                   end_step=end_step,
                                                   frequency=100)
}

**pruned_model = sparsity.prune_low_magnitude(loaded_model, **new_pruning_params)`**

it generates error as:
Please initialize Prune with a supported layer. Layers should either be a PrunableLayer instance, or should be supported by the PruneRegistry. You passed: <class 'tensorflow.python.keras.engine.sequential.Sequential'>

Metadata

Metadata

Assignees

Labels

technique:pruningRegarding tfmot.sparsity.keras APIs and docs

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions