TensorFlow 2.5.0
Release 2.5.0
Major Features and Improvements
- Support for Python3.9 has been added.
tf.data:tf.dataservice now supports strict round-robin reads, which is useful for synchronous training workloads where example sizes vary. With strict round robin reads, users can guarantee that consumers get similar-sized examples in the same step.- tf.data service now supports optional compression. Previously data would always be compressed, but now you can disable compression by passing
compression=Nonetotf.data.experimental.service.distribute(...). tf.data.Dataset.batch()now supportsnum_parallel_callsanddeterministicarguments.num_parallel_callsis used to indicate that multiple input batches should be computed in parallel. Withnum_parallel_callsset,deterministicis used to indicate that outputs can be obtained in the non-deterministic order.- Options returned by
tf.data.Dataset.options()are no longer mutable. - tf.data input pipelines can now be executed in debug mode, which disables any asynchrony, parallelism, or non-determinism and forces Python execution (as opposed to trace-compiled graph execution) of user-defined functions passed into transformations such as
map. The debug mode can be enabled throughtf.data.experimental.enable_debug_mode().
tf.lite- Enabled the new MLIR-based quantization backend by default
- The new backend is used for 8 bits full integer post-training quantization
- The new backend removes the redundant rescales and fixes some bugs (shared weight/bias, extremely small scales, etc)
- Set
experimental_new_quantizerin tf.lite.TFLiteConverter to False to disable this change
- Enabled the new MLIR-based quantization backend by default
tf.kerastf.keras.metrics.AUCnow support logit predictions.- Enabled a new supported input type in
Model.fit,tf.keras.utils.experimental.DatasetCreator, which takes a callable,dataset_fn.DatasetCreatoris intended to work across alltf.distributestrategies, and is the only input type supported for Parameter Server strategy.
tf.distributetf.distribute.experimental.ParameterServerStrategynow supports training with KerasModel.fitwhen used withDatasetCreator.- Creating
tf.random.Generatorundertf.distribute.Strategyscopes is now allowed (except fortf.distribute.experimental.CentralStorageStrategyandtf.distribute.experimental.ParameterServerStrategy). Different replicas will get different random-number streams.
- TPU embedding support
- Added
profile_data_directorytoEmbeddingConfigSpecin_tpu_estimator_embedding.py. This allows embedding lookup statistics gathered at runtime to be used in embedding layer partitioning decisions.
- Added
- PluggableDevice
- Third-party devices can now connect to TensorFlow as plug-ins through StreamExecutor C API.
and PluggableDevice interface.- Add custom ops and kernels through kernel and op registration C API.
- Register custom graph optimization passes with graph optimization C API.
- Third-party devices can now connect to TensorFlow as plug-ins through StreamExecutor C API.
- oneAPI Deep Neural Network Library (oneDNN) CPU performance optimizations from Intel-optimized TensorFlow are now available in the official x86-64 Linux and Windows builds.
- They are off by default. Enable them by setting the environment variable
TF_ENABLE_ONEDNN_OPTS=1. - We do not recommend using them in GPU systems, as they have not been sufficiently tested with GPUs yet.
- They are off by default. Enable them by setting the environment variable
- TensorFlow pip packages are now built with CUDA11.2 and cuDNN 8.1.0
Breaking Changes
- The
TF_CPP_MIN_VLOG_LEVELenvironment variable has been renamed to toTF_CPP_MAX_VLOG_LEVELwhich correctly describes its effect.
Bug Fixes and Other Changes
-
tf.keras:- Preprocessing layers API consistency changes:
StringLookupaddedoutput_mode,sparse, andpad_to_max_tokensarguments with same semantics asTextVectorization.IntegerLookupaddedoutput_mode,sparse, andpad_to_max_tokensarguments with same semantics asTextVectorization. Renamedmax_values,oov_valueandmask_valuetomax_tokens,oov_tokenandmask_tokento align withStringLookupandTextVectorization.TextVectorizationdefault forpad_to_max_tokensswitched to False.CategoryEncodingno longer supportsadapt,IntegerLookupnow supports equivalent functionality.max_tokensargument renamed tonum_tokens.Discretizationaddednum_binsargument for learning bins boundaries through callingadapton a dataset. Renamedbinsargument tobin_boundariesfor specifying bins withoutadapt.
- Improvements to model saving/loading:
model.load_weightsnow accepts paths to saved models.
- Keras inputs can now be created directly from arbitrary
tf.TypeSpecs. - Two new learning rate schedules added:
tf.keras.optimizers.schedules.CosineDecayandtf.keras.optimizers.schedules.CosineDecayRestarts.
- Preprocessing layers API consistency changes:
-
tf.data:- Exposing
tf.data.experimental.ExternalStatePolicy, which can be used to control how external state should be handled during dataset serialization or iterator checkpointing. - Changing
tf.data.experimental.saveto store the type specification of the dataset elements. This avoids the need for explicitly specifying theelement_specargument oftf.data.experimental.loadwhen loading the previously saved dataset. - Add
.element_specproperty totf.data.DatasetSpecto access the inner spec. This can be used to extract the structure of nested
datasets. - Add
tf.data.experimental.AutoShardingPolicy.HINTwhich can be used to provide hints to tf.distribute-based auto-sharding as to where in the input pipeline to insert sharding transformations. - Make tf.data.Options persistent across
tf.functionandGraphDefboundaries.
- Exposing
-
XLA compilation:
tf.function(experimental_compile=True)has become a stable API, renamedtf.function(jit_compile=True).- XLA can now compile MirroredStrategy: the step function passed to
strategy.runcan now be annoted withjit_compile=True.
-
tf.distribute:- Rename
experimental_prefetch_to_deviceintf.distribute.InputOptionstoexperimental_fetch_to_deviceto better reflect the purpose.
- Rename
-
tf.lite:- class
tflite::Subgraph:- Removed the
tensors()method and the non-const overload of thenodes_and_registration()method, both of which were previously documented as temporary and to be removed.- Uses of
tensors()can be replaced by calling the existing methodstensors_size()andtensor(int). - Uses of the non-const overload of
nodes_and_registrationcan be replaced by calling the existing methodsnodes_size()andcontext(), and then calling theGetNodeAndRegistrationmethod in theTfLiteContextreturned bycontext().
- Uses of
- Removed the
- NNAPI
- Removed deprecated
Interpreter::UseNNAPI(bool)C++ API.- Use
NnApiDelegate()and related delegate configuration methods directly.
- Use
- Replaced the model cache key for models computation algorithm with one guaranteed to be stable across runs.
- Removed deprecated
- 16 bits quantization
- Added int16x8 support for ABS, REDUCE_MAX and REDUCE_MIN operators.
- Additional tests and fixes for ADD and SUB operators.
- Added support for saved model's session initializer through
TFLiteConverter.from_saved_model. - Added DEPTH_TO_SPACE support in Post training quantization.
- Added dynamic range quantization support for the BatchMatMul op.
- Both symmetric and asymmetric quantized input tensor are supported.
- Add
RFFT2Das builtin op. (RFFT2Dalso supportsRFFTD.) Currently only supports float32 input. - Add 5D support to
SLICEop. - TFLite Supports SingatureDef:
- TFLiteConverter exports models with SignatureDef
- Interpreter supports getting a list of signatures and getting callable function for a given signaturedef.
- Add int8 support for
ReshapeV2. - Add experimental support for optimization with sparsity.
- Add nominal support for unsigned 32-bit integer tensor types. Note that very few TFLite kernels support this type natively, so its use in mobile ML authoring is generally discouraged.
- Add support for static hash tables through
TFLiteConverter.from_saved_model. - The Python TF Lite Interpreter bindings now has an option
experimental_preserve_all_tensorsto aid in debugging conversion. - Quantized x86 execution defaults to Ruy GEMM library for platforms with AVX support.
- Deprecate
tf.compat.v1.lite.experimental.get_potentially_supported_ops. Usetf.lite.TFLiteConverterdirectly to check whether a model is convertible. - Add support to select one of three different built-in op resolvers
- Enabled post training with calibrations for models that require user provided TensorFlow Lite custom op libraries via
converter.target_spec._experimental_custom_op_registerers. used in Python Interpreter API.
- class
-
TF Core:
- Corrected higher-order gradients of control flow constructs (
tf.cond,tf.while_loop, and compositions liketf.foldl) computed withtf.GradientTapeinside atf.function. - Changed the default step size in
gradient_checker_v2.compute_gradientsto be exactly representable as a binary floating point numbers. This avoids poluting gradient approximations needlessly, which is some cases leads to false negatives in op gradient tests. - Added
tf.config.experimental.get_memory_info, returning a dict with the current and peak memory usage. Deprecatedtf.config.experimental.get_memory_usagein favor of this new function. - Extended
tf.config.experimental.enable_tensor_float_32_executionto control Tensor-Float-32 evaluation in RNNs. - Added a 'experimental_payloads' field to tf.errors.OpError and its subclasses to support more detailed error reporting. This is inspired from Abseil Status payloads: https://github.com/abseil/abseil-cpp/blob/master/absl/status/status.h
- Corrected higher-order gradients of control flow constructs (
-
tf.summary:- New
tf.summary.graphallows manual write of TensorFlow graph (tf.Graphortf.compat.v1.GraphDef) as a summary. This is not a replacement for the trace-based API.
- New
-
Set
/d2ReducedOptimizeHugeFunctionsby default for Windows builds. This provides a big compile-time speedup, and effectively raises the minimum supported MSVC version to 16.4 (current: 16.8). -
TensorRT
- Removed the deprecated
session_configparameter for the TF1-TRT converterTrtGraphConverter. Previously, we issued a warning when the value of the parameter is not None. - The TF2-TRT converter
TrtGraphConverterV2takes an object of class TrtConversionParams as a parameter. Removed three deprecated fields from this class:rewriter_config_template,is_dynamic_op, andmax_batch_size. Previously, we issued a warning when the value ofrewriter_config_templateis not None. We issued an error when the value ofis_dynamic_opis not True. We didn't use the value formax_batch_sizefor building TensorRT engines. Add parametersuse_dynamic_shapeto enable dynamic shape support. The default is to disable dynamic shape support. Adddynamic_shape_profile_strategyfor selecting a dynamic shape profile strategy. The default is profile strategy isRange. - Issue a warning when function get_tensorrt_rewriter_config is used.
- Removed the deprecated
-
TF XLA
- Add new enum value
MLIR_BRIDGE_ROLLOUT_SAFE_MODE_ENABLEDtotf.config.experimental.mlir_bridge_rolloutto enable a "safe" mode. This runs the MLIR bridge only when an analysis of the graph only when an analysis of the graph determines that it is safe to run. - Add new enum value
MLIR_BRIDGE_ROLLOUT_SAFE_MODE_FALLBACK_ENABLED' totf.config.experimental.mlir_bridge_rollout` to enable a fallback for the MLIR bridge in a "safe" mode. This runs the MLIR bridge in a FallbackEnabled mode when an analysis of the graph determines that the graph does not have unsupported features.
- Add new enum value
-
Deterministic Op Functionality:
- Add determinism-unimplemented exception-throwing to the segment-sum ops. When the environment variable
TF_DETERMINISTIC_OPSis set to"true"or"1"(when op-determinism is expected), an attempt to run the following ops on a GPU will throwtf.errors.UnimplementedError(with an understandable message) whendatais a floating-point type, including complex types (if supported):tf.math.segment_prod,tf.math.segment_sum,tf.math.unsorted_segment_mean,tf.math.unsorted_segment_sqrt_n,tf.math.unsorted_segment_prod,tf.math.unsorted_segment_sum, and therefore alsotf.convert_to_tensorwhenvalueis of typetf.IndexedSlices(such as in the back prop thoughtf.gatherinto a dense embedding). See issue 39751 which this change addresses, but does not solve. This exception-throwing behavior can be disabled by setting the environment variableTF_DISABLE_SEGMENT_REDUCTION_OP_DETERMINISM_EXCEPTIONSto"true"or
"1". For more information about these changes, see the description in pull request 47772. - In previous versions of TensorFlow, when a GPU was available,
tf.sparse.sparse_dense_matmulintroduced truly random noise in the forward path for data of typetf.float32but not for data of typetf.float64(for which there was no GPU implementation). In this current release, GPU support for other floating-point types (tf.float16,tf.float64,tf.complex64, andtf.complex128) has been added for this op. If you were relying on the determinism of thetf.float64CPU implementation being automatically selected because of the absence of thetf.float64GPU implementation, you with either need to force the op to run on the CPU or use a different data type.
- Add determinism-unimplemented exception-throwing to the segment-sum ops. When the environment variable
-
Security
- Fixes a heap buffer overflow in
RaggedBinCount(CVE-2021-29512) - Fixes a heap out of bounds write in
RaggedBinCount(CVE-2021-29514) - Fixes a type confusion during tensor casts which leads to dereferencing null pointers (CVE-2021-29513)
- Fixes a reference binding to null pointer in
MatrixDiag*ops (CVE-2021-29515) - Fixes a null pointer dereference via invalid Ragged Tensors (CVE-2021-29516)
- Fixes a division by zero in
Conv3D(CVE-2021-29517) - Fixes vulnerabilities where session operations in eager mode lead to null pointer dereferences (CVE-2021-29518)
- Fixes a
CHECK-fail inSparseCrosscaused by type confusion (CVE-2021-29519) - Fixes a segfault in
SparseCountSparseOutput(CVE-2021-29521) - Fixes a heap buffer overflow in
Conv3DBackprop*(CVE-2021-29520) - Fixes a division by 0 in
Conv3DBackprop*(CVE-2021-29522) - Fixes a
CHECK-fail inAddManySparseToTensorsMap(CVE-2021-29523) - Fixes a division by 0 in
Conv2DBackpropFilter(CVE-2021-29524) - Fixes a division by 0 in
Conv2DBackpropInput(CVE-2021-29525) - Fixes a division by 0 in
Conv2D(CVE-2021-29526) - Fixes a division by 0 in
QuantizedConv2D(CVE-2021-29527) - Fixes a division by 0 in
QuantizedMul(CVE-2021-29528) - Fixes vulnerabilities caused by invalid validation in
SparseMatrixSparseCholesky(CVE-2021-29530) - Fixes a heap buffer overflow caused by rounding (CVE-2021-29529)
- Fixes a
CHECK-fail intf.raw_ops.EncodePng(CVE-2021-29531) - Fixes a heap out of bounds read in
RaggedCross(CVE-2021-29532) - Fixes a
CHECK-fail inDrawBoundingBoxes(CVE-2021-29533) - Fixes a heap buffer overflow in
QuantizedMul(CVE-2021-29535) - Fixes a
CHECK-fail inSparseConcat(CVE-2021-29534) - Fixes a heap buffer overflow in
QuantizedResizeBilinear(CVE-2021-29537) - Fixes a heap buffer overflow in
QuantizedReshape(CVE-2021-29536) - Fixes a division by zero in
Conv2DBackpropFilter(CVE-2021-29538) - Fixes a heap buffer overflow in
Conv2DBackpropFilter(CVE-2021-29540) - Fixes a heap buffer overflow in
StringNGrams(CVE-2021-29542) - Fixes a null pointer dereference in
StringNGrams(CVE-2021-29541) - Fixes a
CHECK-fail inQuantizeAndDequantizeV4Grad(CVE-2021-29544) - Fixes a
CHECK-fail inCTCGreedyDecoder(CVE-2021-29543) - Fixes a heap buffer overflow in
SparseTensorToCSRSparseMatrix(CVE-2021-29545) - Fixes a division by 0 in
QuantizedBiasAdd(CVE-2021-29546) - Fixes a heap out of bounds in
QuantizedBatchNormWithGlobalNormalization(CVE-2021-29547) - Fixes a division by 0 in
QuantizedBatchNormWithGlobalNormalization(CVE-2021-29548) - Fixes a division by 0 in
QuantizedAdd(CVE-2021-29549) - Fixes a division by 0 in
FractionalAvgPool(CVE-2021-29550) - Fixes an OOB read in
MatrixTriangularSolve(CVE-2021-29551) - Fixes a heap OOB in
QuantizeAndDequantizeV3(CVE-2021-29553) - Fixes a
CHECK-failure inUnsortedSegmentJoin(CVE-2021-29552) - Fixes a division by 0 in
DenseCountSparseOutput(CVE-2021-29554) - Fixes a division by 0 in
FusedBatchNorm(CVE-2021-29555) - Fixes a division by 0 in
SparseMatMul(CVE-2021-29557) - Fixes a division by 0 in
Reverse(CVE-2021-29556) - Fixes a heap buffer overflow in
SparseSplit(CVE-2021-29558) - Fixes a heap OOB access in unicode ops (CVE-2021-29559)
- Fixes a heap buffer overflow in
RaggedTensorToTensor(CVE-2021-29560) - Fixes a
CHECK-fail inLoadAndRemapMatrix(CVE-2021-29561) - Fixes a
CHECK-fail intf.raw_ops.IRFFT(CVE-2021-29562) - Fixes a
CHECK-fail intf.raw_ops.RFFT(CVE-2021-29563) - Fixes a null pointer dereference in
EditDistance(CVE-2021-29564) - Fixes a null pointer dereference in
SparseFillEmptyRows(CVE-2021-29565) - Fixes a heap OOB access in
Dilation2DBackpropInput(CVE-2021-29566) - Fixes a reference binding to null in
ParameterizedTruncatedNormal(CVE-2021-29568) - Fixes a set of vulnerabilities caused by lack of validation in
SparseDenseCwiseMul(CVE-2021-29567) - Fixes a heap out of bounds read in
MaxPoolGradWithArgmax(CVE-2021-29570) - Fixes a heap out of bounds read in
RequantizationRange(CVE-2021-29569) - Fixes a memory corruption in
DrawBoundingBoxesV2(CVE-2021-29571) - Fixes a reference binding to nullptr in
SdcaOptimizer(CVE-2021-29572) - Fixes an overflow and a denial of service in
tf.raw_ops.ReverseSequence(CVE-2021-29575) - Fixes a division by 0 in
MaxPoolGradWithArgmax(CVE-2021-29573) - Fixes an undefined behavior in
MaxPool3DGradGrad(CVE-2021-29574) - Fixes a heap buffer overflow in
MaxPool3DGradGrad(CVE-2021-29576) - Fixes a heap buffer overflow in
AvgPool3DGrad(CVE-2021-29577) - Fixes an undefined behavior and a
CHECK-fail inFractionalMaxPoolGrad(CVE-2021-29580) - Fixes a heap buffer overflow in
FractionalAvgPoolGrad(CVE-2021-29578) - Fixes a heap buffer overflow in
MaxPoolGrad(CVE-2021-29579) - Fixes a segfault in
CTCBeamSearchDecoder(CVE-2021-29581) - Fixes a heap OOB read in
tf.raw_ops.Dequantize(CVE-2021-29582) - Fixes a
CHECK-fail due to integer overflow (CVE-2021-29584) - Fixes a heap buffer overflow and undefined behavior in
FusedBatchNorm(CVE-2021-29583) - Fixes a division by zero in padding computation in TFLite (CVE-2021-29585)
- Fixes a division by zero in optimized pooling implementations in TFLite (CVE-2021-29586)
- Fixes a division by zero in TFLite's implementation of
SpaceToDepth(CVE-2021-29587) - Fixes a division by zero in TFLite's implementation of
GatherNd(CVE-2021-29589) - Fixes a division by zero in TFLite's implementation of
TransposeConv(CVE-2021-29588) - Fixes a heap OOB read in TFLite's implementation of
MinimumorMaximum(CVE-2021-29590) - Fixes a null pointer dereference in TFLite's
Reshapeoperator (CVE-2021-29592) - Fixes a stack overflow due to looping TFLite subgraph (CVE-2021-29591)
- Fixes a division by zero in TFLite's implementation of
DepthToSpace(CVE-2021-29595) - Fixes a division by zero in TFLite's convolution code (CVE-2021-29594)
- Fixes a division by zero in TFLite's implementation of
EmbeddingLookup(CVE-2021-29596) - Fixes a division by zero in TFLite's implementation of
BatchToSpaceNd(CVE-2021-29593) - Fixes a division by zero in TFLite's implementation of
SpaceToBatchNd(CVE-2021-29597) - Fixes a division by zero in TFLite's implementation of
SVDF(CVE-2021-29598) - Fixes a division by zero in TFLite's implementation of
Split(CVE-2021-29599) - Fixes a division by zero in TFLite's implementation of
OneHot(CVE-2021-29600) - Fixes a division by zero in TFLite's implementation of
DepthwiseConv(CVE-2021-29602) - Fixes a division by zero in TFLite's implementation of hashtable lookup (CVE-2021-29604)
- Fixes a integer overflow in TFLite concatentation (CVE-2021-29601)
- Fixes a integer overflow in TFLite memory allocation (CVE-2021-29605)
- Fixes a heap OOB write in TFLite (CVE-2021-29603)
- Fixes a heap OOB read in TFLite (CVE-2021-29606)
- Fixes a heap OOB and null pointer dereference in
RaggedTensorToTensor(CVE-2021-29608) - Fixes vulnerabilities caused by incomplete validation in
SparseAdd(CVE-2021-29609) - Fixes vulnerabilities caused by incomplete validation in
SparseSparseMinimum(CVE-2021-29607) - Fixes vulnerabilities caused by incomplete validation in
SparseReshape(CVE-2021-29611) - Fixes vulnerabilities caused by invalid validation in
QuantizeAndDequantizeV2(CVE-2021-29610) - Fixes a heap buffer overflow in
BandedTriangularSolve(CVE-2021-29612) - Fixes vulnerabilities caused by incomplete validation in
tf.raw_ops.CTCLoss(CVE-2021-29613) - Fixes an interpreter crash from vulnerabilities in
tf.io.decode_raw(CVE-2021-29614) - Fixes a stack overflow in
ParseAttrValuewith nested tensors (CVE-2021-29615) - Fixes a null dereference in Grappler's
TrySimplify(CVE-2021-29616) - Fixes a crash in
tf.transposewith complex inputs (CVE-2021-29618) - Fixes a crash in
tf.strings.substrdue toCHECK-fail (CVE-2021-29617) - Fixes a segfault in
tf.raw_ops.SparseCountSparseOutput(CVE-2021-29619) - Fixes a segfault in
tf.raw_ops.ImmutableConst(CVE-2021-29539) - Updates
curlto7.76.0to handle CVE-2020-8169, CVE-2020-8177, CVE-2020-8231, CVE-2020-8284, CVE-2020-8285 and CVE-2020-8286.
- Fixes a heap buffer overflow in
-
Other
- Added
show_debug_infotomlir.convert_graph_defandmlir.convert_function. - Added Arm Compute Library (ACL) support to
--config=mkl_aarch64build.
- Added
Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
8bitmp3, Aaron S. Mondal, Abhilash Mahendrakar, Abhinav Upadhyay, Abhishek Kulkarni, Abolfazl Shahbazi, Adam Hillier, Aditya Kane, Ag Ramesh, ahmedsabie, Albert Villanova Del Moral, Aleksey Vitebskiy, Alex Hoffman, Alexander Bayandin, Alfie Edwards, Aman Kishore, Amogh Joshi, andreABbauer, Andrew Goodbody, Andrzej Pomirski, Artemiy Ryabinkov, Ashish Jha, ather, Ayan Moitra, Bairen Yi, Bart Ribbers, Bas Aarts, Behzad Abghari, Ben Arnao, Ben Barsdell, Benjamin Klimczak, bhack, Brendan Collins, Can Wang, Cheng Ren, Chris Leary, Chris Olivier, Clemens Giuliani, Cloud Han, Corey Cole, Cui, Yifeng, Cuong V. Nguyen, Daniel Moore, Dawid Wojciechowski, Ddavis-2015, Dean Wyatte, Denisa Roberts, dependabot[bot], Dmitry Volodin, Dominic Jack, Duncan Riach, dushuai, Elena Zhelezina, Eli Osherovich, Erik Smistad, ewsn1593, Felix Fent, fo40225, François Chollet, Frederic Bastien, Freedom" Koan-Sin Tan, fsx950223, ganand1, gbaned, Georgiy Manuilov, gerbauz, Guillaume Klein, Guozhong Zhuang, Harry Slatyer, Harsh188, henri, Henri Woodcock, Hiran Sarkar, Hollow Man, Håkon Sandsmark, I Wayan Dharmana, icysapphire, Ikko Ashimine, Jab Hofmeier, Jack Hessel, Jacob Valdez, Jakub Jatczak, James Bernardi, Jared Smolens, Jason Zaman, jedlimlx, Jenny Plunkett, Jens Elofsson, Jerry Shih, jgehw, Jia Fu Low, Jim Fisher, jpodivin, Julien Stephan, Jungsub Lim, Junha Park, Junhyuk So, justkw, Kaixi Hou, kashyapraval, Kasra Bigdeli, Kazuaki Ishizaki, Keith Mok, Kevin Cheng, kopytjuk, Kristian Hartikainen, ksood12345, Kulin Seth, kushanam, latyas, Lequn Chen, Leslie-Fang, Long M. Lưu, Lukas Geiger, machineko, Mahmoud Abuzaina, Manish, Mao Yunfei, Maozhou, Ge, Marcin Juszkiewicz, Marcin Owsiany, Marconi Jiang, Marcos Pereira, Maria Romanenko Vexlard, Maria Vexlard, Marius Brehler, marload, Martin Kubovčík, Matej, Mateusz Holenko, Maxiwell S. Garcia, Mazhar, mazharul, mbhuiyan, mdfaijul, Michael Gielda, Michael Kuchnik, Michal Szutenberg, Mikhail Stepanov, Milan Straka, Mitchel Humpherys, Mohamed Moselhy, Mohamed Nour Abouelseoud, Måns Bermell, Måns Nilsson, Nathan Luehr, Nico Jahn, Niroop Ammbashankar, Oceania2018, Omri Steiner, Orivej Desh, Oskar Flordal, oujiafan, Patrik Laurell, Paul B. Isaac'S, Paul Klinger, Pawel Piskorski, Pedro Marques, Phat Tran, Piotr Zierhoffer, piyushdatta, Pnikam-Cad, Prashant Kumar, Prateek Gupta, PratsBhatt, Pravin Karandikar, qqq.jq, QQ喵, Quintin, Rama Ketineni, ravikyram, Rehan Guha, rhdong, rmothukuru, Roger Cheng, Rohit Santhanam, rposts, Rsanthanam-Amd, rsun, Rsun-Bdti, Ryan Kuester, ryanking13, Saduf2019, Sami Kama, Samuel Marks, Scott Tseng, Sean Moriarity, Sergey Popov, Sergii Khomenko, Sheng, Yang, shwetaoj, Sidong-Wei, Simon Maurer, Simrit Kaur, Srini511, Srinivasan Narayanamoorthy, Stephan, Stephen Matthews, Sungmann Cho, Sunoru, Suraj Sudhir, Suraj Upadhyay, Taebum Kim, Takayoshi Koizumi, Tamas Bela Feher, Teng Lu, Thibaut Goetghebuer-Planchon, Tomwildenhain-Microsoft, Tony, Traun Leyden, Trent Lo, TVLIgnacy, Tzu-Wei Sung, vaibhav, Vignesh Kothapalli, Vikram Dattu, viktprog, Vinayaka Bandishti, Vincent Abriou, Vishakha Agrawal, Vivek Panyam, Vladimir Silyaev, Võ Văn Nghĩa, wamuir, Wang, Yanzhang, wangsiyu, Waqar Hameed, wxinix, Xiao Yang, xiaohong1031, Xiaoming (Jason) Cui, Xinan Jiang, Yair Ehrenwald, Yajush Vyas, Yasir Modak, Yimei Sun, Yong Tang, Yosshi999, youshenmebutuo, yqtianust, Yuan Tang, yuanbopeng, Yuriy Chernyshov, Yuta Fukasawa, Zachary Deane-Mayer, Zeno Gantner, Zhoulong Jiang, zhuyie, zilinzhu, 彭震东