KEMBAR78
GitHub - triton-inference-server/server at r20.08
Skip to content

triton-inference-server/server

 
 

Repository files navigation

License

NVIDIA Triton Inference Server

NVIDIA Triton Inference Server provides a cloud inferencing solution optimized for NVIDIA GPUs. The server provides an inference service via an HTTP/REST or GRPC endpoint, allowing remote clients to request inferencing for any model being managed by the server. For edge deployments, Triton Server is also available as a shared library with an API that allows the full functionality of the server to be included directly in an application.

What's New in 2.2.0

  • TensorFlow 2.x is now supported in addition to TensorFlow 1.x. See the Frameworks Support Matrix for the supported TensorFlow versions. The version of TensorFlow used can be selected when launching Triton with the --backend-config=tensorflow,version=<version> flag. Set <version> to 1 or 2 to select TensorFlow1 or TensorFlow2 respectively. By default TensorFlow 1 is used.
  • Add inference request timeout option to Python and C++ client libraries.
  • GRPC inference protocol updated to fix performance regression.
  • Explicit major/minor versioning added to TRITONSERVER and TRITONBACKED APIs.
  • New CMake option TRITON_CLIENT_SKIP_EXAMPLES to disable building the client examples.

Features

  • Multiple framework support. The server can manage any number and mix of models (limited by system disk and memory resources). Supports TensorRT, TensorFlow GraphDef, TensorFlow SavedModel, ONNX, PyTorch, and Caffe2 NetDef model formats. Both TensorFlow 1.x and TensorFlow 2.x are supported. Also supports TensorFlow-TensorRT and ONNX-TensorRT integrated models. Variable-size input and output tensors are allowed if supported by the framework. See Capabilities for detailed support information for each framework.
  • Concurrent model execution support. Multiple models (or multiple instances of the same model) can run simultaneously on the same GPU.
  • Batching support. For models that support batching, Triton Server can accept requests for a batch of inputs and respond with the corresponding batch of outputs. Triton Server also supports multiple scheduling and batching algorithms that combine individual inference requests together to improve inference throughput. These scheduling and batching decisions are transparent to the client requesting inference.
  • Custom backend support. Triton Server allows individual models to be implemented with custom backends instead of by a deep-learning framework. With a custom backend a model can implement any logic desired, while still benefiting from the GPU support, concurrent execution, dynamic batching and other features provided by the server.
  • Ensemble support. An ensemble represents a pipeline of one or more models and the connection of input and output tensors between those models. A single inference request to an ensemble will trigger the execution of the entire pipeline.
  • Multi-GPU support. Triton Server can distribute inferencing across all system GPUs.
  • Triton Server provides multiple modes for model management. These model management modes allow for both implicit and explicit loading and unloading of models without requiring a server restart.
  • Model repositories may reside on a locally accessible file system (e.g. NFS), in Google Cloud Storage or in Amazon S3.
  • HTTP/REST and GRPC inference protocols based on the community developed KFServing protocol.
  • Readiness and liveness health endpoints suitable for any orchestration or deployment framework, such as Kubernetes.
  • Metrics indicating GPU utilization, server throughput, and server latency.
  • C library inferface allows the full functionality of Triton Server to be included directly in an application.

The current release of the Triton Inference Server is 2.2.0 and corresponds to the 20.08 release of the tensorrtserver container on NVIDIA GPU Cloud (NGC). The branch for this release is r20.08.

Backwards Compatibility

Version 2 of Triton is beta quality, so you should expect some changes to the server and client protocols and APIs. Version 2 of Triton does not generally maintain backwards compatibility with version 1. Specifically, you should take the following items into account when transitioning from version 1 to version 2:

  • The Triton executables and libraries are in /opt/tritonserver. The Triton executable is /opt/tritonserver/bin/tritonserver.
  • Some tritonserver command-line arguments are removed, changed or have different default behavior in version 2.
    • --api-version, --http-health-port, --grpc-infer-thread-count, --grpc-stream-infer-thread-count,--allow-poll-model-repository, --allow-model-control and --tf-add-vgpu are removed.
    • The default for --model-control-mode is changed to none.
    • --tf-allow-soft-placement and --tf-gpu-memory-fraction are renamed
      to --backend-config="tensorflow,allow-soft-placement=<true,false>" and --backend-config="tensorflow,gpu-memory-fraction=<float>".
  • The HTTP/REST and GRPC protocols, while conceptually similar to version 1, are completely changed in version 2. See the inference protocols section of the documentation for more information.
  • Python and C++ client libraries are re-implemented to match the new HTTP/REST and GRPC protocols. The Python client no longer depends on a C++ shared library and so should be usable on any platform that supports Python. See the client libraries section of the documentaion for more information.
  • The version 2 cmake build requires these changes:
    • The cmake flag names have changed from having a TRTIS prefix to having a TRITON prefix. For example, TRITON_ENABLE_TENSORRT.
    • The build targets are server, client and custom-backend to build the server, client libraries and examples, and custom backend SDK, respectively.
  • In the Docker containers the environment variables indicating the Triton version have changed to have a TRITON prefix, for example, TRITON_SERVER_VERSION.

Documentation

The User Guide, Developer Guide, and API Reference documentation for the current release provide guidance on installing, building, and running Triton Inference Server.

You can also view the documentation for the master branch and for earlier releases.

NVIDIA publishes a number of deep learning examples that use Triton.

An FAQ provides answers for frequently asked questions.

READMEs for deployment examples can be found in subdirectories of deploy/, for example, deploy/single_server/README.rst.

The Release Notes and Support Matrix indicate the required versions of the NVIDIA Driver and CUDA, and also describe which GPUs are supported by Triton Server.

Presentations and Papers

Contributing

Contributions to Triton Inference Server are more than welcome. To contribute make a pull request and follow the guidelines outlined in the Contributing document.

Reporting problems, asking questions

We appreciate any feedback, questions or bug reporting regarding this project. When help with code is needed, follow the process outlined in the Stack Overflow (https://stackoverflow.com/help/mcve) document. Ensure posted examples are:

  • minimal – use as little code as possible that still produces the same problem
  • complete – provide all parts needed to reproduce the problem. Check if you can strip external dependency and still show the problem. The less time we spend on reproducing problems the more time we have to fix it
  • verifiable – test the code you're about to provide to make sure it reproduces the problem. Remove all other problems that are not related to your request/question.