View source on GitHub
|
Computes log sigmoid of x element-wise.
tf.compat.v1.math.log_sigmoid(
x, name=None
)
Specifically, y = log(1 / (1 + exp(-x))). For numerical stability,
we use y = -tf.nn.softplus(-x).
Args | |
|---|---|
x
|
A Tensor with type float32 or float64.
|
name
|
A name for the operation (optional). |
Returns | |
|---|---|
A Tensor with the same type as x.
|
Usage Example:
If a positive number is large, then its log_sigmoid will approach to 0 since
the formula will be y = log( <large_num> / (1 + <large_num>) ) which
approximates to log (1) which is 0.
x = tf.constant([0.0, 1.0, 50.0, 100.0])tf.math.log_sigmoid(x)<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-6.9314718e-01, -3.1326169e-01, -1.9287499e-22, -0.0000000e+00],dtype=float32)>
If a negative number is large, its log_sigmoid will approach to the number
itself since the formula will be y = log( 1 / (1 + <large_num>) ) which is
log (1) - log ( (1 + <large_num>) ) which approximates to - <large_num>
that is the number itself.
x = tf.constant([-100.0, -50.0, -1.0, 0.0])tf.math.log_sigmoid(x)<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-100. , -50. , -1.3132616, -0.6931472],dtype=float32)>
View source on GitHub