View source on GitHub
|
Scaled Exponential Linear Unit (SELU).
tf.keras.activations.selu(
x
)
The Scaled Exponential Linear Unit (SELU) activation function is defined as:
scale * xifx > 0scale * alpha * (exp(x) - 1)ifx < 0
where alpha and scale are pre-defined constants
(alpha=1.67326324 and scale=1.05070098).
Basically, the SELU activation function multiplies scale (> 1) with the
output of the keras.activations.elu function to ensure a slope larger
than one for positive inputs.
The values of alpha and scale are
chosen so that the mean and variance of the inputs are preserved
between two consecutive layers as long as the weights are initialized
correctly (see keras.initializers.LecunNormal initializer)
and the number of input units is "large enough"
(see reference paper for more information).
Args | |
|---|---|
x
|
Input tensor. |
Notes:
- To be used together with the
keras.initializers.LecunNormalinitializer. - To be used together with the dropout variant
keras.layers.AlphaDropout(rather than regular dropout).
View source on GitHub