View source on GitHub
|
Cell class for the LSTM layer.
Inherits From: Layer, Operation
tf.keras.layers.LSTMCell(
units,
activation='tanh',
recurrent_activation='sigmoid',
use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
unit_forget_bias=True,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
seed=None,
**kwargs
)
Used in the notebooks
| Used in the guide | Used in the tutorials |
|---|---|
This class processes one step within the whole time sequence input, whereas
keras.layer.LSTM processes the whole sequence.
Args | |
|---|---|
units
|
Positive integer, dimensionality of the output space. |
activation
|
Activation function to use. Default: hyperbolic tangent
(tanh). If you pass None, no activation is applied
(ie. "linear" activation: a(x) = x).
|
recurrent_activation
|
Activation function to use for the recurrent step.
Default: sigmoid (sigmoid). If you pass None, no activation is
applied (ie. "linear" activation: a(x) = x).
|
use_bias
|
Boolean, (default True), whether the layer
should use a bias vector.
|
kernel_initializer
|
Initializer for the kernel weights matrix,
used for the linear transformation of the inputs. Default:
"glorot_uniform".
|
recurrent_initializer
|
Initializer for the recurrent_kernel
weights matrix, used for the linear transformation
of the recurrent state. Default: "orthogonal".
|
bias_initializer
|
Initializer for the bias vector. Default: "zeros".
|
unit_forget_bias
|
Boolean (default True). If True,
add 1 to the bias of the forget gate at initialization.
Setting it to True will also force bias_initializer="zeros".
This is recommended in Jozefowicz et al.
|
kernel_regularizer
|
Regularizer function applied to the kernel weights
matrix. Default: None.
|
recurrent_regularizer
|
Regularizer function applied to the
recurrent_kernel weights matrix. Default: None.
|
bias_regularizer
|
Regularizer function applied to the bias vector.
Default: None.
|
kernel_constraint
|
Constraint function applied to the kernel weights
matrix. Default: None.
|
recurrent_constraint
|
Constraint function applied to the
recurrent_kernel weights matrix. Default: None.
|
bias_constraint
|
Constraint function applied to the bias vector.
Default: None.
|
dropout
|
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. |
recurrent_dropout
|
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. |
seed
|
Random seed for dropout. |
Example:
inputs = np.random.random((32, 10, 8))rnn = keras.layers.RNN(keras.layers.LSTMCell(4))output = rnn(inputs)output.shape(32, 4)rnn = keras.layers.RNN(keras.layers.LSTMCell(4),return_sequences=True,return_state=True)whole_sequence_output, final_state = rnn(inputs)whole_sequence_output.shape(32, 10, 4)final_state.shape(32, 4)
Methods
from_config
@classmethodfrom_config( config )
Creates a layer from its config.
This method is the reverse of get_config,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights).
| Args | |
|---|---|
config
|
A Python dictionary, typically the output of get_config. |
| Returns | |
|---|---|
| A layer instance. |
get_dropout_mask
get_dropout_mask(
step_input
)
get_initial_state
get_initial_state(
batch_size=None
)
get_recurrent_dropout_mask
get_recurrent_dropout_mask(
step_input
)
reset_dropout_mask
reset_dropout_mask()
Reset the cached dropout mask if any.
The RNN layer invokes this in the call() method
so that the cached mask is cleared after calling cell.call(). The
mask should be cached across all timestep within the same batch, but
shouldn't be cached between batches.
reset_recurrent_dropout_mask
reset_recurrent_dropout_mask()
symbolic_call
symbolic_call(
*args, **kwargs
)
View source on GitHub