View source on GitHub
|
Computes the crossentropy metric between the labels and predictions.
Inherits From: MeanMetricWrapper, Mean, Metric
tf.keras.metrics.CategoricalCrossentropy(
name='categorical_crossentropy',
dtype=None,
from_logits=False,
label_smoothing=0,
axis=-1
)
This is the crossentropy metric class to be used when there are multiple
label classes (2 or more). It assumes that labels are one-hot encoded,
e.g., when labels values are [2, 0, 1], then
y_true is [[0, 0, 1], [1, 0, 0], [0, 1, 0]].
Example:
Example:
# EPSILON = 1e-7, y = y_true, y` = y_pred# y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)# y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]# xent = -sum(y * log(y'), axis = -1)# = -((log 0.95), (log 0.1))# = [0.051, 2.302]# Reduced xent = (0.051 + 2.302) / 2m = keras.metrics.CategoricalCrossentropy()m.update_state([[0, 1, 0], [0, 0, 1]],[[0.05, 0.95, 0], [0.1, 0.8, 0.1]])m.result()1.1769392
m.reset_state()m.update_state([[0, 1, 0], [0, 0, 1]],[[0.05, 0.95, 0], [0.1, 0.8, 0.1]],sample_weight=np.array([0.3, 0.7]))m.result()1.6271976
Usage with compile() API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[keras.metrics.CategoricalCrossentropy()])
Attributes | |
|---|---|
dtype
|
|
variables
|
|
Methods
add_variable
add_variable(
shape, initializer, dtype=None, aggregation='sum', name=None
)
add_weight
add_weight(
shape=(), initializer=None, dtype=None, name=None
)
from_config
@classmethodfrom_config( config )
get_config
get_config()
Return the serializable config of the metric.
reset_state
reset_state()
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Compute the current metric value.
| Returns | |
|---|---|
| A scalar tensor, or a dictionary of scalar tensors. |
stateless_reset_state
stateless_reset_state()
stateless_result
stateless_result(
metric_variables
)
stateless_update_state
stateless_update_state(
metric_variables, *args, **kwargs
)
update_state
update_state(
y_true, y_pred, sample_weight=None
)
Accumulate statistics for the metric.
__call__
__call__(
*args, **kwargs
)
Call self as a function.
View source on GitHub