View source on GitHub
|
Calculates how often predictions match integer labels.
Inherits From: MeanMetricWrapper, Mean, Metric
tf.keras.metrics.SparseCategoricalAccuracy(
name='sparse_categorical_accuracy', dtype=None
)
Used in the notebooks
| Used in the guide | Used in the tutorials |
|---|---|
acc = np.dot(sample_weight, np.equal(y_true, np.argmax(y_pred, axis=1))
You can provide logits of classes as y_pred, since argmax of
logits and probabilities are same.
This metric creates two local variables, total and count that are used
to compute the frequency with which y_pred matches y_true. This
frequency is ultimately returned as sparse categorical accuracy: an
idempotent operation that simply divides total by count.
If sample_weight is None, weights default to 1.
Use sample_weight of 0 to mask values.
Args | |
|---|---|
name
|
(Optional) string name of the metric instance. |
dtype
|
(Optional) data type of the metric result. |
Example:
m = keras.metrics.SparseCategoricalAccuracy()m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]])m.result()0.5
m.reset_state()m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]],sample_weight=[0.7, 0.3])m.result()0.3
Usage with compile() API:
model.compile(optimizer='sgd',
loss='sparse_categorical_crossentropy',
metrics=[keras.metrics.SparseCategoricalAccuracy()])
Attributes | |
|---|---|
dtype
|
|
variables
|
|
Methods
add_variable
add_variable(
shape, initializer, dtype=None, aggregation='sum', name=None
)
add_weight
add_weight(
shape=(), initializer=None, dtype=None, name=None
)
from_config
@classmethodfrom_config( config )
get_config
get_config()
Return the serializable config of the metric.
reset_state
reset_state()
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Compute the current metric value.
| Returns | |
|---|---|
| A scalar tensor, or a dictionary of scalar tensors. |
stateless_reset_state
stateless_reset_state()
stateless_result
stateless_result(
metric_variables
)
stateless_update_state
stateless_update_state(
metric_variables, *args, **kwargs
)
update_state
update_state(
y_true, y_pred, sample_weight=None
)
Accumulate statistics for the metric.
__call__
__call__(
*args, **kwargs
)
Call self as a function.
View source on GitHub