View source on GitHub
|
Matrix-vector multiply using LU decomposition.
Inherits From: ScaleMatvecLU, AutoCompositeTensorBijector, Bijector, AutoCompositeTensor
tfp.bijectors.MatvecLU(
lower_upper, permutation, validate_args=False, name=None
)
This bijector is identical to the 'Convolution1x1' used in Glow [(Kingma and Dhariwal, 2018)[1].
Examples
Here's an example of initialization via random weights matrix:
def trainable_lu_factorization(
event_size, batch_shape=(), seed=None, dtype=tf.float32, name=None):
with tf.name_scope(name or 'trainable_lu_factorization'):
event_size = tf.convert_to_tensor(
event_size, dtype_hint=tf.int32, name='event_size')
batch_shape = tf.convert_to_tensor(
batch_shape, dtype_hint=event_size.dtype, name='batch_shape')
random_matrix = tf.random.uniform(
shape=tf.concat([batch_shape, [event_size, event_size]], axis=0),
dtype=dtype,
seed=seed)
random_orthonormal = tf.linalg.qr(random_matrix)[0]
lower_upper, permutation = tf.linalg.lu(random_orthonormal)
lower_upper = tf.Variable(
initial_value=lower_upper,
trainable=True,
name='lower_upper')
# Initialize a non-trainable variable for the permutation indices so
# that its value isn't re-sampled from run-to-run.
permutation = tf.Variable(
initial_value=permutation,
trainable=False,
name='permutation')
return lower_upper, permutation
channels = 3
conv1x1 = tfb.MatvecLU(*trainable_lu_factorization(channels),
validate_args=True)
x = tf.random.uniform(shape=[2, 28, 28, channels])
fwd = conv1x1.forward(x)
rev_fwd = conv1x1.inverse(fwd)
# ==> x
To initialize this variable outside of TensorFlow, one can also use SciPy, e.g.,
def lu_factorized_random_orthonormal_matrix(channels, dtype=np.float32):
random_matrix = np.random.rand(channels, channels).astype(dtype)
lower_upper = scipy.linalg.qr(random_matrix)[0]
permutation = scipy.linalg.lu(lower_upper, overwrite_a=True)[0]
permutation = np.argmax(permutation, axis=-2)
return lower_upper, permutation
References
[1]: Diederik P. Kingma, Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions. arXiv preprint arXiv:1807.03039, 2018. https://arxiv.org/abs/1807.03039
Args | |
|---|---|
lower_upper
|
The LU factorization as returned by tf.linalg.lu.
|
permutation
|
The LU factorization permutation as returned by
tf.linalg.lu.
|
validate_args
|
Python bool indicating whether arguments should be
checked for correctness.
Default value: False.
|
name
|
Python str name given to ops managed by this object.
Default value: None (i.e., 'MatvecLU').
|
Raises | |
|---|---|
ValueError
|
If both/neither channels and lower_upper/permutation are
specified.
|
Attributes | |
|---|---|
dtype
|
|
forward_min_event_ndims
|
Returns the minimal number of dimensions bijector.forward operates on.
Multipart bijectors return structured |
graph_parents
|
Returns this Bijector's graph_parents as a Python list.
|
inverse_min_event_ndims
|
Returns the minimal number of dimensions bijector.inverse operates on.
Multipart bijectors return structured |
is_constant_jacobian
|
Returns true iff the Jacobian matrix is not a function of x. |
lower_upper
|
|
name
|
Returns the string name of this Bijector.
|
name_scope
|
Returns a tf.name_scope instance for this class.
|
non_trainable_variables
|
Sequence of non-trainable variables owned by this module and its submodules. |
parameters
|
Dictionary of parameters used to instantiate this Bijector.
|
permutation
|
|
submodules
|
Sequence of all sub-modules.
Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).
|
trainable_variables
|
Sequence of trainable variables owned by this module and its submodules. |
validate_args
|
Returns True if Tensor arguments will be validated. |
variables
|
Sequence of variables owned by this module and its submodules. |
Methods
copy
copy(
**override_parameters_kwargs
)
Creates a copy of the bijector.
| Args | |
|---|---|
**override_parameters_kwargs
|
String/value dictionary of initialization arguments to override with new values. |
| Returns | |
|---|---|
bijector
|
A new instance of type(self) initialized from the union
of self.parameters and override_parameters_kwargs, i.e.,
dict(self.parameters, **override_parameters_kwargs).
|
experimental_batch_shape
experimental_batch_shape(
x_event_ndims=None, y_event_ndims=None
)
Returns the batch shape of this bijector for inputs of the given rank.
The batch shape of a bijector decribes the set of distinct
transformations it represents on events of a given size. For example: the
bijector tfb.Scale([1., 2.]) has batch shape [2] for scalar events
(event_ndims = 0), because applying it to a scalar event produces
two scalar outputs, the result of two different scaling transformations.
The same bijector has batch shape [] for vector events, because applying
it to a vector produces (via elementwise multiplication) a single vector
output.
Bijectors that operate independently on multiple state parts, such as
tfb.JointMap, must broadcast to a coherent batch shape. Some events may
not be valid: for example, the bijector
tfd.JointMap([tfb.Scale([1., 2.]), tfb.Scale([1., 2., 3.])]) does not
produce a valid batch shape when event_ndims = [0, 0], since the batch
shapes of the two parts are inconsistent. The same bijector
does define valid batch shapes of [], [2], and [3] if event_ndims
is [1, 1], [0, 1], or [1, 0], respectively.
Since transforming a single event produces a scalar log-det-Jacobian, the
batch shape of a bijector with non-constant Jacobian is expected to equal
the shape of forward_log_det_jacobian(x, event_ndims=x_event_ndims)
or inverse_log_det_jacobian(y, event_ndims=y_event_ndims), for x
or y of the specified ndims.
| Args | |
|---|---|
x_event_ndims
|
Optional Python int (structure) number of dimensions in
a probabilistic event passed to forward; this must be greater than
or equal to self.forward_min_event_ndims. If None, defaults to
self.forward_min_event_ndims. Mutually exclusive with y_event_ndims.
Default value: None.
|
y_event_ndims
|
Optional Python int (structure) number of dimensions in
a probabilistic event passed to inverse; this must be greater than
or equal to self.inverse_min_event_ndims. Mutually exclusive with
x_event_ndims.
Default value: None.
|
| Returns | |
|---|---|
batch_shape
|
TensorShape batch shape of this bijector for a
value with the given event rank. May be unknown or partially defined.
|
experimental_batch_shape_tensor
experimental_batch_shape_tensor(
x_event_ndims=None, y_event_ndims=None
)
Returns the batch shape of this bijector for inputs of the given rank.
The batch shape of a bijector decribes the set of distinct
transformations it represents on events of a given size. For example: the
bijector tfb.Scale([1., 2.]) has batch shape [2] for scalar events
(event_ndims = 0), because applying it to a scalar event produces
two scalar outputs, the result of two different scaling transformations.
The same bijector has batch shape [] for vector events, because applying
it to a vector produces (via elementwise multiplication) a single vector
output.
Bijectors that operate independently on multiple state parts, such as
tfb.JointMap, must broadcast to a coherent batch shape. Some events may
not be valid: for example, the bijector
tfd.JointMap([tfb.Scale([1., 2.]), tfb.Scale([1., 2., 3.])]) does not
produce a valid batch shape when event_ndims = [0, 0], since the batch
shapes of the two parts are inconsistent. The same bijector
does define valid batch shapes of [], [2], and [3] if event_ndims
is [1, 1], [0, 1], or [1, 0], respectively.
Since transforming a single event produces a scalar log-det-Jacobian, the
batch shape of a bijector with non-constant Jacobian is expected to equal
the shape of forward_log_det_jacobian(x, event_ndims=x_event_ndims)
or inverse_log_det_jacobian(y, event_ndims=y_event_ndims), for x
or y of the specified ndims.
| Args | |
|---|---|
x_event_ndims
|
Optional Python int (structure) number of dimensions in
a probabilistic event passed to forward; this must be greater than
or equal to self.forward_min_event_ndims. If None, defaults to
self.forward_min_event_ndims. Mutually exclusive with y_event_ndims.
Default value: None.
|
y_event_ndims
|
Optional Python int (structure) number of dimensions in
a probabilistic event passed to inverse; this must be greater than
or equal to self.inverse_min_event_ndims. Mutually exclusive with
x_event_ndims.
Default value: None.
|
| Returns | |
|---|---|
batch_shape_tensor
|
integer Tensor batch shape of this bijector for a
value with the given event rank.
|
experimental_compute_density_correction
experimental_compute_density_correction(
x, tangent_space, backward_compat=False, **kwargs
)
Density correction for this transformation wrt the tangent space, at x.
Subclasses of Bijector may call the most specific applicable
method of TangentSpace, based on whether the transformation is
dimension-preserving, coordinate-wise, a projection, or something
more general. The backward-compatible assumption is that the
transformation is dimension-preserving (goes from R^n to R^n).
| Args | |
|---|---|
x
|
Tensor (structure). The point at which to calculate the density.
|
tangent_space
|
TangentSpace or one of its subclasses. The tangent to
the support manifold at x.
|
backward_compat
|
bool specifying whether to assume that the Bijector
is dimension-preserving.
|
**kwargs
|
Optional keyword arguments forwarded to tangent space methods. |
| Returns | |
|---|---|
density_correction
|
Tensor representing the density correction---in log
space---under the transformation that this Bijector denotes.
|
| Raises | |
|---|---|
TypeError if backward_compat is False but no method of
TangentSpace has been called explicitly.
|
forward
forward(
x, name='forward', **kwargs
)
Returns the forward Bijector evaluation, i.e., X = g(Y).
| Args | |
|---|---|
x
|
Tensor (structure). The input to the 'forward' evaluation.
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
| Returns | |
|---|---|
Tensor (structure).
|
| Raises | |
|---|---|
TypeError
|
if self.dtype is specified and x.dtype is not
self.dtype.
|
NotImplementedError
|
if _forward is not implemented.
|
forward_dtype
forward_dtype(
dtype=UNSPECIFIED, name='forward_dtype', **kwargs
)
Returns the dtype returned by forward for the provided input.
forward_event_ndims
forward_event_ndims(
event_ndims, **kwargs
)
Returns the number of event dimensions produced by forward.
| Args | |
|---|---|
event_ndims
|
Structure of Python and/or Tensor ints, and/or None
values. The structure should match that of
self.forward_min_event_ndims, and all non-None values must be
greater than or equal to the corresponding value in
self.forward_min_event_ndims.
|
**kwargs
|
Optional keyword arguments forwarded to nested bijectors. |
| Returns | |
|---|---|
forward_event_ndims
|
Structure of integers and/or None values matching
self.inverse_min_event_ndims. These are computed using 'prefer static'
semantics: if any inputs are None, some or all of the outputs may be
None, indicating that the output dimension could not be inferred
(conversely, if all inputs are non-None, all outputs will be
non-None). If all input event_ndims are Python ints, all of the
(non-None) outputs will be Python ints; otherwise, some or
all of the outputs may be Tensor ints.
|
forward_event_shape
forward_event_shape(
input_shape
)
Shape of a single sample from a single batch as a TensorShape.
Same meaning as forward_event_shape_tensor. May be only partially defined.
| Args | |
|---|---|
input_shape
|
TensorShape (structure) indicating event-portion shape
passed into forward function.
|
| Returns | |
|---|---|
forward_event_shape_tensor
|
TensorShape (structure) indicating
event-portion shape after applying forward. Possibly unknown.
|
forward_event_shape_tensor
forward_event_shape_tensor(
input_shape, name='forward_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32 1D Tensor.
| Args | |
|---|---|
input_shape
|
Tensor, int32 vector (structure) indicating event-portion
shape passed into forward function.
|
name
|
name to give to the op |
| Returns | |
|---|---|
forward_event_shape_tensor
|
Tensor, int32 vector (structure)
indicating event-portion shape after applying forward.
|
forward_log_det_jacobian
forward_log_det_jacobian(
x, event_ndims=None, name='forward_log_det_jacobian', **kwargs
)
Returns both the forward_log_det_jacobian.
| Args | |
|---|---|
x
|
Tensor (structure). The input to the 'forward' Jacobian determinant
evaluation.
|
event_ndims
|
Optional number of dimensions in the probabilistic events
being transformed; this must be greater than or equal to
self.forward_min_event_ndims. If event_ndims is specified, the
log Jacobian determinant is summed to produce a
scalar log-determinant for each event. Otherwise
(if event_ndims is None), no reduction is performed.
Multipart bijectors require structured event_ndims, such that the
batch rank rank(y[i]) - event_ndims[i] is the same for all
elements i of the structured input. In most cases (with the
exception of tfb.JointMap) they further require that
event_ndims[i] - self.inverse_min_event_ndims[i] is the same for
all elements i of the structured input.
Default value: None (equivalent to self.forward_min_event_ndims).
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
| Returns | |
|---|---|
Tensor (structure), if this bijector is injective.
If not injective this is not implemented.
|
| Raises | |
|---|---|
TypeError
|
if y's dtype is incompatible with the expected output dtype.
|
NotImplementedError
|
if neither _forward_log_det_jacobian
nor {_inverse, _inverse_log_det_jacobian} are implemented, or
this is a non-injective bijector.
|
ValueError
|
if the value of event_ndims is not valid for this bijector.
|
inverse
inverse(
y, name='inverse', **kwargs
)
Returns the inverse Bijector evaluation, i.e., X = g^{-1}(Y).
| Args | |
|---|---|
y
|
Tensor (structure). The input to the 'inverse' evaluation.
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
| Returns | |
|---|---|
Tensor (structure), if this bijector is injective.
If not injective, returns the k-tuple containing the unique
k points (x1, ..., xk) such that g(xi) = y.
|
| Raises | |
|---|---|
TypeError
|
if y's structured dtype is incompatible with the expected
output dtype.
|
NotImplementedError
|
if _inverse is not implemented.
|
inverse_dtype
inverse_dtype(
dtype=UNSPECIFIED, name='inverse_dtype', **kwargs
)
Returns the dtype returned by inverse for the provided input.
inverse_event_ndims
inverse_event_ndims(
event_ndims, **kwargs
)
Returns the number of event dimensions produced by inverse.
| Args | |
|---|---|
event_ndims
|
Structure of Python and/or Tensor ints, and/or None
values. The structure should match that of
self.inverse_min_event_ndims, and all non-None values must be
greater than or equal to the corresponding value in
self.inverse_min_event_ndims.
|
**kwargs
|
Optional keyword arguments forwarded to nested bijectors. |
| Returns | |
|---|---|
inverse_event_ndims
|
Structure of integers and/or None values matching
self.forward_min_event_ndims. These are computed using 'prefer static'
semantics: if any inputs are None, some or all of the outputs may be
None, indicating that the output dimension could not be inferred
(conversely, if all inputs are non-None, all outputs will be
non-None). If all input event_ndims are Python ints, all of the
(non-None) outputs will be Python ints; otherwise, some or
all of the outputs may be Tensor ints.
|
inverse_event_shape
inverse_event_shape(
output_shape
)
Shape of a single sample from a single batch as a TensorShape.
Same meaning as inverse_event_shape_tensor. May be only partially defined.
| Args | |
|---|---|
output_shape
|
TensorShape (structure) indicating event-portion shape
passed into inverse function.
|
| Returns | |
|---|---|
inverse_event_shape_tensor
|
TensorShape (structure) indicating
event-portion shape after applying inverse. Possibly unknown.
|
inverse_event_shape_tensor
inverse_event_shape_tensor(
output_shape, name='inverse_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32 1D Tensor.
| Args | |
|---|---|
output_shape
|
Tensor, int32 vector (structure) indicating
event-portion shape passed into inverse function.
|
name
|
name to give to the op |
| Returns | |
|---|---|
inverse_event_shape_tensor
|
Tensor, int32 vector (structure)
indicating event-portion shape after applying inverse.
|
inverse_log_det_jacobian
inverse_log_det_jacobian(
y, event_ndims=None, name='inverse_log_det_jacobian', **kwargs
)
Returns the (log o det o Jacobian o inverse)(y).
Mathematically, returns: log(det(dX/dY))(Y). (Recall that: X=g^{-1}(Y).)
Note that forward_log_det_jacobian is the negative of this function,
evaluated at g^{-1}(y).
| Args | |
|---|---|
y
|
Tensor (structure). The input to the 'inverse' Jacobian determinant
evaluation.
|
event_ndims
|
Optional number of dimensions in the probabilistic events
being transformed; this must be greater than or equal to
self.inverse_min_event_ndims. If event_ndims is specified, the
log Jacobian determinant is summed to produce a
scalar log-determinant for each event. Otherwise
(if event_ndims is None), no reduction is performed.
Multipart bijectors require structured event_ndims, such that the
batch rank rank(y[i]) - event_ndims[i] is the same for all
elements i of the structured input. In most cases (with the
exception of tfb.JointMap) they further require that
event_ndims[i] - self.inverse_min_event_ndims[i] is the same for
all elements i of the structured input.
Default value: None (equivalent to self.inverse_min_event_ndims).
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
| Returns | |
|---|---|
ildj
|
Tensor, if this bijector is injective.
If not injective, returns the tuple of local log det
Jacobians, log(det(Dg_i^{-1}(y))), where g_i is the restriction
of g to the ith partition Di.
|
| Raises | |
|---|---|
TypeError
|
if x's dtype is incompatible with the expected inverse-dtype.
|
NotImplementedError
|
if _inverse_log_det_jacobian is not implemented.
|
ValueError
|
if the value of event_ndims is not valid for this bijector.
|
parameter_properties
@classmethodparameter_properties( dtype=tf.float32 )
Returns a dict mapping constructor arg names to property annotations.
This dict should include an entry for each of the bijector's
Tensor-valued constructor arguments.
| Args | |
|---|---|
dtype
|
Optional float dtype to assume for continuous-valued parameters.
Some constraining bijectors require advance knowledge of the dtype
because certain constants (e.g., tfb.Softplus.low) must be
instantiated with the same dtype as the values to be transformed.
|
| Returns | |
|---|---|
parameter_properties
|
A
str ->tfp.python.internal.parameter_properties.ParameterPropertiesdict mapping constructor argument names toParameterProperties`
instances.
|
with_name_scope
@classmethodwith_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):@tf.Module.with_name_scopedef __call__(self, x):if not hasattr(self, 'w'):self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))return tf.matmul(x, self.w)
Using the above module would produce tf.Variables and tf.Tensors whose
names included the module name:
mod = MyModule()mod(tf.ones([1, 2]))<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>mod.w<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,numpy=..., dtype=float32)>
| Args | |
|---|---|
method
|
The method to wrap. |
| Returns | |
|---|---|
| The original method wrapped such that it enters the module's name scope. |
__call__
__call__(
value, name=None, **kwargs
)
Applies or composes the Bijector, depending on input type.
This is a convenience function which applies the Bijector instance in
three different ways, depending on the input:
- If the input is a
tfd.Distributioninstance, returntfd.TransformedDistribution(distribution=input, bijector=self). - If the input is a
tfb.Bijectorinstance, returntfb.Chain([self, input]). - Otherwise, return
self.forward(input)
| Args | |
|---|---|
value
|
A tfd.Distribution, tfb.Bijector, or a (structure of) Tensor.
|
name
|
Python str name given to ops created by this function.
|
**kwargs
|
Additional keyword arguments passed into the created
tfd.TransformedDistribution, tfb.Bijector, or self.forward.
|
| Returns | |
|---|---|
composition
|
A tfd.TransformedDistribution if the input was a
tfd.Distribution, a tfb.Chain if the input was a tfb.Bijector, or
a (structure of) Tensor computed by self.forward.
|
Examples
sigmoid = tfb.Reciprocal()(
tfb.Shift(shift=1.)(
tfb.Exp()(
tfb.Scale(scale=-1.))))
# ==> `tfb.Chain([
# tfb.Reciprocal(),
# tfb.Shift(shift=1.),
# tfb.Exp(),
# tfb.Scale(scale=-1.),
# ])` # ie, `tfb.Sigmoid()`
log_normal = tfb.Exp()(tfd.Normal(0, 1))
# ==> `tfd.TransformedDistribution(tfd.Normal(0, 1), tfb.Exp())`
tfb.Exp()([-1., 0., 1.])
# ==> tf.exp([-1., 0., 1.])
__eq__
__eq__(
other
)
Return self==value.
__getitem__
__getitem__(
slices
)
__iter__
__iter__()
View source on GitHub