TensorFlow 2 version
|
Wrappers for primitive Neural Net (NN) Operations.
Modules
rnn_cell module: Module for constructing RNN Cells.
Functions
all_candidate_sampler(...): Generate the set of all classes.
atrous_conv2d(...): Atrous convolution (a.k.a. convolution with holes or dilated convolution).
atrous_conv2d_transpose(...): The transpose of atrous_conv2d.
avg_pool(...): Performs the average pooling on the input.
avg_pool1d(...): Performs the average pooling on the input.
avg_pool2d(...): Performs the average pooling on the input.
avg_pool3d(...): Performs the average pooling on the input.
avg_pool_v2(...): Performs the avg pooling on the input.
batch_norm_with_global_normalization(...): Batch normalization.
batch_normalization(...): Batch normalization.
bias_add(...): Adds bias to value.
bidirectional_dynamic_rnn(...): Creates a dynamic version of bidirectional recurrent neural network. (deprecated)
collapse_repeated(...): Merge repeated labels into single labels.
compute_accidental_hits(...): Compute the position ids in sampled_candidates matching true_classes.
compute_average_loss(...): Scales per-example losses with sample_weights and computes their average.
conv1d(...): Computes a 1-D convolution given 3-D input and filter tensors. (deprecated argument values) (deprecated argument values)
conv1d_transpose(...): The transpose of conv1d.
conv2d(...): Computes a 2-D convolution given 4-D input and filter tensors.
conv2d_backprop_filter(...): Computes the gradients of convolution with respect to the filter.
conv2d_backprop_input(...): Computes the gradients of convolution with respect to the input.
conv2d_transpose(...): The transpose of conv2d.
conv3d(...): Computes a 3-D convolution given 5-D input and filter tensors.
conv3d_backprop_filter(...): Computes the gradients of 3-D convolution with respect to the filter.
conv3d_backprop_filter_v2(...): Computes the gradients of 3-D convolution with respect to the filter.
conv3d_transpose(...): The transpose of conv3d.
conv_transpose(...): The transpose of convolution.
convolution(...): Computes sums of N-D convolutions (actually cross-correlation).
crelu(...): Computes Concatenated ReLU.
ctc_beam_search_decoder(...): Performs beam search decoding on the logits given in input.
ctc_beam_search_decoder_v2(...): Performs beam search decoding on the logits given in input.
ctc_greedy_decoder(...): Performs greedy decoding on the logits given in input (best path).
ctc_loss(...): Computes the CTC (Connectionist Temporal Classification) Loss.
ctc_loss_v2(...): Computes CTC (Connectionist Temporal Classification) loss.
ctc_unique_labels(...): Get unique labels and indices for batched labels for tf.nn.ctc_loss.
depth_to_space(...): DepthToSpace for tensors of type T.
depthwise_conv2d(...): Depthwise 2-D convolution.
depthwise_conv2d_backprop_filter(...): Computes the gradients of depthwise convolution with respect to the filter.
depthwise_conv2d_backprop_input(...): Computes the gradients of depthwise convolution with respect to the input.
depthwise_conv2d_native(...): Computes a 2-D depthwise convolution given 4-D input and filter tensors.
depthwise_conv2d_native_backprop_filter(...): Computes the gradients of depthwise convolution with respect to the filter.
depthwise_conv2d_native_backprop_input(...): Computes the gradients of depthwise convolution with respect to the input.
dilation2d(...): Computes the grayscale dilation of 4-D input and 3-D filter tensors.
dropout(...): Computes dropout. (deprecated arguments)
dynamic_rnn(...): Creates a recurrent neural network specified by RNNCell cell. (deprecated)
elu(...): Computes exponential linear: exp(features) - 1 if < 0, features otherwise.
embedding_lookup(...): Looks up ids in a list of embedding tensors.
embedding_lookup_sparse(...): Computes embeddings for the given ids and weights.
erosion2d(...): Computes the grayscale erosion of 4-D value and 3-D kernel tensors.
fixed_unigram_candidate_sampler(...): Samples a set of classes using the provided (fixed) base distribution.
fractional_avg_pool(...): Performs fractional average pooling on the input. (deprecated)
fractional_max_pool(...): Performs fractional max pooling on the input. (deprecated)
fused_batch_norm(...): Batch normalization.
in_top_k(...): Says whether the targets are in the top K predictions.
l2_loss(...): L2 Loss.
l2_normalize(...): Normalizes along dimension axis using an L2 norm. (deprecated arguments)
leaky_relu(...): Compute the Leaky ReLU activation function.
learned_unigram_candidate_sampler(...): Samples a set of classes from a distribution learned during training.
local_response_normalization(...): Local Response Normalization.
log_poisson_loss(...): Computes log Poisson loss given log_input.
log_softmax(...): Computes log softmax activations. (deprecated arguments)
log_uniform_candidate_sampler(...): Samples a set of classes using a log-uniform (Zipfian) base distribution.
lrn(...): Local Response Normalization.
max_pool(...): Performs the max pooling on the input.
max_pool1d(...): Performs the max pooling on the input.
max_pool2d(...): Performs the max pooling on the input.
max_pool3d(...): Performs the max pooling on the input.
max_pool_v2(...): Performs the max pooling on the input.
max_pool_with_argmax(...): Performs max pooling on the input and outputs both max values and indices.
moments(...): Calculate the mean and variance of x.
nce_loss(...): Computes and returns the noise-contrastive estimation training loss.
normalize_moments(...): Calculate the mean and variance of based on the sufficient statistics.
pool(...): Performs an N-D pooling operation.
quantized_avg_pool(...): Produces the average pool of the input tensor for quantized types.
quantized_conv2d(...): Computes a 2D convolution given quantized 4D input and filter tensors.
quantized_max_pool(...): Produces the max pool of the input tensor for quantized types.
quantized_relu_x(...): Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
raw_rnn(...): Creates an RNN specified by RNNCell cell and loop function loop_fn.
relu(...): Computes rectified linear: max(features, 0).
relu6(...): Computes Rectified Linear 6: min(max(features, 0), 6).
relu_layer(...): Computes Relu(x * weight + biases).
safe_embedding_lookup_sparse(...): Lookup embedding results, accounting for invalid IDs and empty features.
sampled_softmax_loss(...): Computes and returns the sampled softmax training loss.
scale_regularization_loss(...): Scales the sum of the given regularization losses by number of replicas.
selu(...): Computes scaled exponential linear: scale * alpha * (exp(features) - 1)
separable_conv2d(...): 2-D convolution with separable filters.
sigmoid(...): Computes sigmoid of x element-wise.
sigmoid_cross_entropy_with_logits(...): Computes sigmoid cross entropy given logits.
softmax(...): Computes softmax activations. (deprecated arguments)
softmax_cross_entropy_with_logits(...): Computes softmax cross entropy between logits and labels. (deprecated)
softmax_cross_entropy_with_logits_v2(...): Computes softmax cross entropy between logits and labels. (deprecated arguments)
softplus(...): Computes softplus: log(exp(features) + 1).
softsign(...): Computes softsign: features / (abs(features) + 1).
space_to_batch(...): SpaceToBatch for 4-D tensors of type T.
space_to_depth(...): SpaceToDepth for tensors of type T.
sparse_softmax_cross_entropy_with_logits(...): Computes sparse softmax cross entropy between logits and labels.
static_bidirectional_rnn(...): Creates a bidirectional recurrent neural network. (deprecated)
static_rnn(...): Creates a recurrent neural network specified by RNNCell cell. (deprecated)
static_state_saving_rnn(...): RNN that accepts a state saver for time-truncated RNN calculation. (deprecated)
sufficient_statistics(...): Calculate the sufficient statistics for the mean and variance of x.
swish(...): Computes the Swish activation function: x * sigmoid(x).
tanh(...): Computes hyperbolic tangent of x element-wise.
top_k(...): Finds values and indices of the k largest entries for the last dimension.
uniform_candidate_sampler(...): Samples a set of classes using a uniform base distribution.
weighted_cross_entropy_with_logits(...): Computes a weighted cross entropy. (deprecated arguments)
weighted_moments(...): Returns the frequency-weighted mean and variance of x.
with_space_to_batch(...): Performs op on the space-to-batch representation of input.
xw_plus_b(...): Computes matmul(x, weights) + biases.
zero_fraction(...): Returns the fraction of zeros in value.
TensorFlow 2 version