-
Notifications
You must be signed in to change notification settings - Fork 1.8k
[OMNIML-2336][feat] add W4A8 NVFP4 FP8 fused moe #7968
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
📝 WalkthroughWalkthroughAdds support for W4A8+NVFP4/FP8 quantization in Fused MoE: extends backend selection to trigger TRTLLMGen path, introduces a new W4A8NVFP4FP8 method class, updates quantization weight/scale creation and loading signatures, adds a new public capability flag, and wires a new forward path handling for the variant. Changes
Sequence Diagram(s)sequenceDiagram
autonumber
actor User
participant MoE as MoE Module
participant Selector as Backend Selector
participant Quant as Quant Method Picker
participant TRT as TRTLLMGen Runner
User->>MoE: create/forward(config, quant_config)
MoE->>Selector: choose backend
alt has_w4a8_nvfp4_fp8
Selector->>MoE: use TRTLLMGenFusedMoE
MoE->>Quant: _get_quant_method()
Quant-->>MoE: W4A8NVFP4FP8TRTLLMGenFusedMoEMethod
MoE->>TRT: create_weights()/load_scales (32-wide)
User->>MoE: forward(...)
MoE->>TRT: forward_impl (route, optional allgather, fp8/fp4 block-scale run)
TRT-->>MoE: outputs
MoE-->>User: result
else other modes
Selector-->>MoE: existing path (unchanged)
end
sequenceDiagram
autonumber
participant MoE as MoE.forward_impl
participant Router as Router
participant Comm as Allgather (optional)
participant Kernel as FP8/FP4 MoE Kernel
Note over MoE,Kernel: New W4A8+NVFP4/FP8 branch
MoE->>Router: compute routing
alt post-quant allgather enabled
MoE->>Comm: allgather activations
Comm-->>MoE: gathered activations
end
MoE->>Kernel: run block-scale MoE (nvfp4/fp8 scales, alphas)
Kernel-->>MoE: expert outputs
MoE-->>MoE: finalize (assemble states)
MoE-->>User: return
Estimated code review effort🎯 3 (Moderate) | ⏱️ ~25 minutes Pre-merge checks and finishing touches❌ Failed checks (2 warnings)
✅ Passed checks (1 passed)
✨ Finishing touches
🧪 Generate unit tests
Tip 👮 Agentic pre-merge checks are now available in preview!Pro plan users can now enable pre-merge checks in their settings to enforce checklists before merging PRs.
Please see the documentation for more information. Example: reviews:
pre_merge_checks:
custom_checks:
- name: "Undocumented Breaking Changes"
mode: "warning"
instructions: |
Pass/fail criteria: All breaking changes to public APIs, CLI flags, environment variables, configuration keys, database schemas, or HTTP/GraphQL endpoints must be documented in the "Breaking Change" section of the PR description and in CHANGELOG.md. Exclude purely internal or private changes (e.g., code not exported from package entry points or explicitly marked as internal).Please share your feedback with us on this Discord post. Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out. Comment |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 1
🧹 Nitpick comments (6)
tensorrt_llm/_torch/modules/fused_moe/quantization.py (2)
1481-1487: Guard against invalid scaling_vector_size; add asserts.Hidden and intermediate sizes must be divisible by scaling_vector_size to avoid mis-shaped block scales and kernel mismatches.
Apply this diff:
def create_weights(self, module: torch.nn.Module, weight_dtype, weight_vec_size, block_scales_dtype, block_scales_vec_size, - scaling_vector_size=16): + scaling_vector_size=16): - module.scaling_vector_size = scaling_vector_size + module.scaling_vector_size = scaling_vector_size + assert module.hidden_size % module.scaling_vector_size == 0, ( + f"hidden_size {module.hidden_size} must be divisible by scaling_vector_size " + f"{module.scaling_vector_size}" + ) + assert module.intermediate_size_per_partition % module.scaling_vector_size == 0, ( + f"intermediate_size_per_partition {module.intermediate_size_per_partition} must be divisible by " + f"scaling_vector_size {module.scaling_vector_size}" + )
2010-2058: Avoid hard-coded 32; use module.scaling_vector_size.Reduces drift if the scaling width changes and keeps overrides consistent.
Apply this diff:
class W4A8NVFP4FP8TRTLLMGenFusedMoEMethod(NVFP4TRTLLMGenFusedMoEMethod): def create_weights(self, module: torch.nn.Module): weight_vec_size = torch.iinfo(self.weight_dtype).bits // 4 block_scales_vec_size = 1 - NVFP4FusedMoEMethod.create_weights(self, module, self.weight_dtype, - weight_vec_size, - self.block_scales_dtype, - block_scales_vec_size, 32) + NVFP4FusedMoEMethod.create_weights(self, module, self.weight_dtype, + weight_vec_size, + self.block_scales_dtype, + block_scales_vec_size, + 32) # sets module.scaling_vector_size @@ - def load_expert_w3_w1_weight_scale_nvfp4( + def load_expert_w3_w1_weight_scale_nvfp4( self, module: torch.nn.Module, w1_weight_scale: torch.Tensor, w3_weight_scale: torch.Tensor, dst_w3_w1_weight_scale: torch.Tensor): return super().load_expert_w3_w1_weight_scale_nvfp4( - module, w1_weight_scale, w3_weight_scale, dst_w3_w1_weight_scale, - 32) + module, w1_weight_scale, w3_weight_scale, dst_w3_w1_weight_scale, + module.scaling_vector_size) @@ - def load_expert_w2_weight_scale_nvfp4(self, module: torch.nn.Module, + def load_expert_w2_weight_scale_nvfp4(self, module: torch.nn.Module, w2_weight_scale: torch.Tensor, dst_w2_weight_scale: torch.Tensor): return super().load_expert_w2_weight_scale_nvfp4( - module, w2_weight_scale, dst_w2_weight_scale, 32) + module, w2_weight_scale, dst_w2_weight_scale, + module.scaling_vector_size)tensorrt_llm/_torch/modules/fused_moe/create_moe.py (1)
49-53: Update warning message to include the new quant mode.Keeps UX consistent with the actual supported set.
Apply this diff:
- logger.warning( - "TRTLLMGenFusedMoE only supports fp8_block_scales, nvfp4, w4a16_mxfp4, w4a8_mxfp4_fp8 and w4a8_mxfp4_mxfp8. " + logger.warning( + "TRTLLMGenFusedMoE only supports fp8_block_scales, nvfp4, w4a16_mxfp4, w4a8_nvfp4_fp8, w4a8_mxfp4_fp8 and w4a8_mxfp4_mxfp8. " f"Check out details in quant_config: {quant_config}" "Using CutlassFusedMoE instead.")tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py (3)
115-116: Include new quant mode in the assertion message.The condition allows it; the error text should reflect it.
Apply this diff:
- assert self.has_deepseek_fp8_block_scales \ - or self.has_nvfp4 or self.has_w4a16_mxfp4 or self.has_w4a8_nvfp4_fp8 \ - or self.has_w4a8_mxfp4_fp8 or self.has_w4a8_mxfp4_mxfp8, "TRTLLMGenFusedMoE only supports fp8_block_scaling, nvfp4, w4a16_mxfp4, w4a8_mxfp4_fp8 and w4a8_mxfp4_mxfp8 dtypes." + assert self.has_deepseek_fp8_block_scales \ + or self.has_nvfp4 or self.has_w4a16_mxfp4 or self.has_w4a8_nvfp4_fp8 \ + or self.has_w4a8_mxfp4_fp8 or self.has_w4a8_mxfp4_mxfp8, \ + "TRTLLMGenFusedMoE only supports fp8_block_scaling, nvfp4, w4a16_mxfp4, w4a8_nvfp4_fp8, w4a8_mxfp4_fp8 and w4a8_mxfp4_mxfp8 dtypes."
206-209: Consider enabling post‑quant allgather for W4A8 NVFP4 FP8.If fp8_fp4_block_scale_moe_runner supports PQ allgather like nvfp4, include it here for performance parity.
Apply this diff if supported:
- is_post_quant_allgather_supported = self.has_nvfp4 or self.has_w4a8_mxfp4_fp8 or self.has_w4a8_mxfp4_mxfp8 + is_post_quant_allgather_supported = ( + self.has_nvfp4 + or self.has_w4a8_nvfp4_fp8 + or self.has_w4a8_mxfp4_fp8 + or self.has_w4a8_mxfp4_mxfp8 + )Please confirm the kernel supports PQ allgather; if not, ignore.
379-410: W4A8 NVFP4 FP8 forward: minor robustness and consistency tweaks.
- Pass router logits/bias as None under PQ allgather (matches other branches).
- Optional: verify whether padding to kernel alignment is ever required for this path.
Apply this diff:
- outputs = torch.ops.trtllm.fp8_fp4_block_scale_moe_runner( - router_logits, - routing_bias, + outputs = torch.ops.trtllm.fp8_fp4_block_scale_moe_runner( + router_logits if not run_post_quant_allgather else None, + routing_bias if not run_post_quant_allgather else None, hidden_states_fp8, self.w3_w1_weight, self.w3_w1_weight_scale.view(torch.float8_e4m3fn), self.w2_weight, self.w2_weight_scale.view(torch.float8_e4m3fn), self.fc31_scale_c.data, self.fc31_alpha.data, self.fc2_alpha.data,Also please validate on a model where hidden_size is not a multiple of common tiles (e.g., 6144) that no input padding is required for this kernel. If padding is required, mirror the mxfp4-fp8 path’s padding pattern.
📜 Review details
Configuration used: Path: .coderabbit.yaml
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (4)
tensorrt_llm/_torch/modules/fused_moe/create_moe.py(1 hunks)tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py(5 hunks)tensorrt_llm/_torch/modules/fused_moe/interface.py(1 hunks)tensorrt_llm/_torch/modules/fused_moe/quantization.py(6 hunks)
🧰 Additional context used
📓 Path-based instructions (3)
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh,py}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
Use only spaces, no tabs; indent with 4 spaces.
Files:
tensorrt_llm/_torch/modules/fused_moe/create_moe.pytensorrt_llm/_torch/modules/fused_moe/interface.pytensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.pytensorrt_llm/_torch/modules/fused_moe/quantization.py
**/*.py
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
**/*.py: Python code must target Python 3.8+.
Indent Python code with 4 spaces; do not use tabs.
Maintain module namespace when importing; prefer 'from package.subpackage import foo' then 'foo.SomeClass()' instead of importing the class directly.
Python filenames should be snake_case (e.g., some_file.py).
Python classes use PascalCase names.
Functions and methods use snake_case names.
Local variables use snake_case; prefix 'k' for variables that start with a number (e.g., k_99th_percentile).
Global variables use upper SNAKE_CASE prefixed with 'G' (e.g., G_MY_GLOBAL).
Constants use upper SNAKE_CASE (e.g., MY_CONSTANT).
Avoid shadowing variables from an outer scope.
Initialize all externally visible members of a class in the constructor.
Prefer docstrings for interfaces that may be used outside a file; comments for in-function or file-local interfaces.
Use Google-style docstrings for classes and functions (Sphinx-parsable).
Document attributes and variables inline so they render under the class/function docstring.
Avoid reflection when a simpler, explicit approach suffices (e.g., avoid dict(**locals()) patterns).
In try/except, catch the most specific exceptions possible.
For duck-typing try/except, keep the try body minimal and use else for the main logic.
Files:
tensorrt_llm/_torch/modules/fused_moe/create_moe.pytensorrt_llm/_torch/modules/fused_moe/interface.pytensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.pytensorrt_llm/_torch/modules/fused_moe/quantization.py
**/*.{cpp,cxx,cc,h,hpp,hh,hxx,cu,cuh,py}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
Prepend the NVIDIA Apache-2.0 copyright header with current year to the top of all source files (e.g., .cpp, .h, .cu, .py).
Files:
tensorrt_llm/_torch/modules/fused_moe/create_moe.pytensorrt_llm/_torch/modules/fused_moe/interface.pytensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.pytensorrt_llm/_torch/modules/fused_moe/quantization.py
🧠 Learnings (3)
📓 Common learnings
Learnt from: djns99
PR: NVIDIA/TensorRT-LLM#6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4010-4012
Timestamp: 2025-08-14T23:23:27.449Z
Learning: For MOE (Mixture of Experts) code reviews in TensorRT-LLM, avoid repeatedly suggesting finalize fusion validation checks and safety assertions. The user djns99 has indicated these suggestions are repetitive and unwanted across multiple MOE-related changes.
📚 Learning: 2025-08-21T02:39:12.009Z
Learnt from: djns99
PR: NVIDIA/TensorRT-LLM#7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1475-1480
Timestamp: 2025-08-21T02:39:12.009Z
Learning: The min latency mode functionality in TensorRT-LLM MOE kernels (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu) is deprecated and no longer being maintained/updated, as confirmed by djns99. Bug reports and optimization suggestions for the computeStridesTmaWarpSpecializedLowLatencyKernel and related min latency code paths should be deprioritized.
Applied to files:
tensorrt_llm/_torch/modules/fused_moe/create_moe.py
📚 Learning: 2025-08-14T23:23:27.449Z
Learnt from: djns99
PR: NVIDIA/TensorRT-LLM#6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4010-4012
Timestamp: 2025-08-14T23:23:27.449Z
Learning: For MOE (Mixture of Experts) code reviews in TensorRT-LLM, avoid repeatedly suggesting finalize fusion validation checks and safety assertions. The user djns99 has indicated these suggestions are repetitive and unwanted across multiple MOE-related changes.
Applied to files:
tensorrt_llm/_torch/modules/fused_moe/create_moe.py
🧬 Code graph analysis (4)
tensorrt_llm/_torch/modules/fused_moe/create_moe.py (3)
tensorrt_llm/llmapi/llm_args.py (2)
quant_config(2299-2302)quant_config(2305-2306)tensorrt_llm/_torch/modules/fused_moe/interface.py (1)
has_w4a8_nvfp4_fp8(305-308)tensorrt_llm/_torch/modules/linear.py (1)
has_w4a8_nvfp4_fp8(1930-1933)
tensorrt_llm/_torch/modules/fused_moe/interface.py (1)
tensorrt_llm/_torch/modules/linear.py (1)
has_w4a8_nvfp4_fp8(1930-1933)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py (3)
tensorrt_llm/_torch/modules/fused_moe/quantization.py (1)
W4A8NVFP4FP8TRTLLMGenFusedMoEMethod(2010-2057)tensorrt_llm/_torch/modules/fused_moe/interface.py (2)
has_w4a8_nvfp4_fp8(305-308)_(72-98)tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py (4)
_(335-371)_(623-646)_(1688-1732)fp8_fp4_block_scale_moe_runner(1611-1684)
tensorrt_llm/_torch/modules/fused_moe/quantization.py (4)
tensorrt_llm/_torch/modules/fused_moe/interface.py (1)
create_weights(191-192)tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py (1)
create_weights(344-352)tensorrt_llm/_torch/modules/fused_moe/fused_moe_triton.py (7)
create_weights(204-225)create_weights(394-435)create_weights(673-734)create_weights(1350-1357)setup_quant_scales(227-228)setup_quant_scales(437-443)setup_quant_scales(736-746)tensorrt_llm/_torch/modules/linear.py (10)
create_weights(220-223)create_weights(278-288)create_weights(321-344)create_weights(488-508)create_weights(589-612)create_weights(721-761)create_weights(916-956)create_weights(1108-1131)create_weights(1220-1239)create_weights(1339-1366)
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
- GitHub Check: Pre-commit Check
🔇 Additional comments (2)
tensorrt_llm/_torch/modules/fused_moe/interface.py (1)
304-309: Property addition looks correct and consistent.Mirrors the linear module’s API and existing quant flags. No issues.
tensorrt_llm/_torch/modules/fused_moe/create_moe.py (1)
44-46: Backend gate extension looks good.Includes the new has_w4a8_nvfp4_fp8() in TRTLLMGen selection.
5603f7f to
9a96808
Compare
|
/bot run |
|
PR_Github #19840 [ run ] triggered by Bot |
|
PR_Github #19840 [ run ] completed with state |
|
/bot run --reuse-test |
|
PR_Github #19845 [ run ] triggered by Bot |
|
PR_Github #19845 [ run ] completed with state |
|
/bot run --reuse-test |
|
PR_Github #19887 [ run ] triggered by Bot |
|
PR_Github #19887 [ run ] completed with state |
9a96808 to
d019368
Compare
|
/bot run |
|
PR_Github #19986 [ run ] triggered by Bot |
|
PR_Github #19986 [ run ] completed with state |
|
/bot run --reuse-test |
|
PR_Github #19999 [ run ] triggered by Bot |
|
PR_Github #19999 [ run ] completed with state |
|
/bot run --reuse-test |
|
PR_Github #20033 [ run ] triggered by Bot |
|
PR_Github #20033 [ run ] completed with state |
|
/bot run --reuse-test |
|
PR_Github #20109 [ run ] triggered by Bot |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you add a test?
|
/bot run --reuse-test |
|
PR_Github #20384 [ run ] triggered by Bot |
|
PR_Github #20384 [ run ] completed with state |
|
/bot run --reuse-test |
|
PR_Github #20396 [ run ] triggered by Bot |
|
PR_Github #20396 [ run ] completed with state |
459b372 to
f6dca13
Compare
|
/bot run |
|
PR_Github #20408 [ run ] triggered by Bot |
|
PR_Github #20408 [ run ] completed with state |
|
/bot run --reuse-test |
|
PR_Github #20425 [ run ] triggered by Bot |
|
PR_Github #20425 [ run ] completed with state |
Signed-off-by: Shiyang Chen <shiychen@nvidia.com>
Signed-off-by: Shiyang Chen <shiychen@nvidia.com>
Signed-off-by: Shiyang Chen <shiychen@nvidia.com>
f6dca13 to
4b47b67
Compare
|
/bot run |
|
PR_Github #20438 [ run ] triggered by Bot |
|
PR_Github #20438 [ run ] completed with state |
|
/bot run |
|
PR_Github #20442 [ run ] triggered by Bot |
|
PR_Github #20442 [ run ] completed with state |
|
/bot skip --comment "previous run failed for a known unrelated bug" |
|
PR_Github #20443 [ skip ] triggered by Bot |
|
PR_Github #20443 [ skip ] completed with state |
Signed-off-by: Shiyang Chen <shiychen@nvidia.com> Signed-off-by: Faradawn Yang <faradawny@gmail.com>
Signed-off-by: Shiyang Chen <shiychen@nvidia.com>
Signed-off-by: Shiyang Chen <shiychen@nvidia.com> Signed-off-by: Faradawn Yang <faradawny@gmail.com>
Summary by CodeRabbit
Description
Test Coverage
PR Checklist
Please review the following before submitting your PR:
PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.
PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.
Test cases are provided for new code paths (see test instructions)
Any new dependencies have been scanned for license and vulnerabilities
CODEOWNERS updated if ownership changes
Documentation updated as needed
The reviewers assigned automatically/manually are appropriate for the PR.
Please check this after reviewing the above items as appropriate for this PR.
GitHub Bot Help
/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...Provide a user friendly way for developers to interact with a Jenkins server.
Run
/bot [-h|--help]to print this help message.See details below for each supported subcommand.
run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]Launch build/test pipelines. All previously running jobs will be killed.
--reuse-test (optional)pipeline-id(OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.--disable-reuse-test(OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.--disable-fail-fast(OPTIONAL) : Disable fail fast on build/tests/infra failures.--skip-test(OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.--stage-list "A10-PyTorch-1, xxx"(OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.--gpu-type "A30, H100_PCIe"(OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.--test-backend "pytorch, cpp"(OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.--only-multi-gpu-test(OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.--disable-multi-gpu-test(OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.--add-multi-gpu-test(OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.--post-merge(OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx"(OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".--detailed-log(OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.--debug(OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in thestage-listparameter to access the appropriate container environment. Note: Does NOT update GitHub check status.For guidance on mapping tests to stage names, see
docs/source/reference/ci-overview.mdand the
scripts/test_to_stage_mapping.pyhelper.kill
killKill all running builds associated with pull request.
skip
skip --comment COMMENTSkip testing for latest commit on pull request.
--comment "Reason for skipping build/test"is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.reuse-pipeline
reuse-pipelineReuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.