KEMBAR78
GitHub - chrishayuk/chuk-tool-processor
Skip to content

chrishayuk/chuk-tool-processor

Repository files navigation

CHUK Tool Processor

PyPI Python License

The missing link between LLM tool calls and reliable execution.

CHUK Tool Processor is a focused, production-ready framework that solves one problem exceptionally well: processing tool calls from LLM outputs. It's not a chatbot framework or LLM orchestration platform—it's the glue layer that bridges LLM responses and actual tool execution.

The Problem

When you build LLM applications, you face a gap:

  1. LLM generates tool calls in various formats (XML tags, OpenAI tool_calls, JSON)
  2. ??? Mystery step ??? where you need to:
    • Parse those calls reliably
    • Handle timeouts, retries, failures
    • Cache expensive results
    • Rate limit API calls
    • Run untrusted code safely
    • Connect to external tool servers
    • Log everything for debugging
  3. Get results back to continue the LLM conversation

Most frameworks give you steps 1 and 3, but step 2 is where the complexity lives. CHUK Tool Processor is step 2.

Why chuk-tool-processor?

It's a Building Block, Not a Framework

Unlike full-fledged LLM frameworks (LangChain, LlamaIndex, etc.), CHUK Tool Processor:

  • Does one thing well: Process tool calls reliably
  • Plugs into any LLM app: Works with any framework or no framework
  • Composable by design: Stack strategies and wrappers like middleware
  • No opinions about your LLM: Bring your own OpenAI, Anthropic, local model
  • Doesn't manage conversations: That's your job
  • Doesn't do prompt engineering: Use whatever prompting you want
  • Doesn't bundle an LLM client: Use any client library you prefer

It's Built for Production

Research code vs production code is about handling the edges:

  • Timeouts: Every tool execution has proper timeout handling
  • Retries: Automatic retry with exponential backoff
  • Rate Limiting: Global and per-tool rate limits with sliding windows
  • Caching: Intelligent result caching with TTL
  • Error Handling: Graceful degradation, never crashes your app
  • Observability: Structured logging, metrics, request tracing
  • Safety: Subprocess isolation for untrusted code

It's About Stacks

CHUK Tool Processor uses a composable stack architecture:

┌─────────────────────────────────┐
│   Your LLM Application          │
│   (handles prompts, responses)  │
└────────────┬────────────────────┘
             │ tool calls
             ▼
┌─────────────────────────────────┐
│   Caching Wrapper               │  ← Cache expensive results
├─────────────────────────────────┤
│   Rate Limiting Wrapper         │  ← Prevent API abuse
├─────────────────────────────────┤
│   Retry Wrapper                 │  ← Handle transient failures
├─────────────────────────────────┤
│   Execution Strategy            │  ← How to run tools
│   • InProcess (fast)            │
│   • Subprocess (isolated)       │
├─────────────────────────────────┤
│   Tool Registry                 │  ← Your registered tools
└─────────────────────────────────┘

Each layer is optional and configurable. Mix and match what you need.

Quick Start

Installation

Prerequisites: Python 3.11+ • Works on macOS, Linux, Windows

# Using pip
pip install chuk-tool-processor

# Using uv (recommended)
uv pip install chuk-tool-processor

# Or from source
git clone https://github.com/chrishayuk/chuk-tool-processor.git
cd chuk-tool-processor
uv pip install -e .

3-Minute Example

Copy-paste this into a file and run it:

import asyncio
from chuk_tool_processor.core.processor import ToolProcessor
from chuk_tool_processor.registry import initialize, register_tool

# Step 1: Define a tool
@register_tool(name="calculator")
class Calculator:
    async def execute(self, operation: str, a: float, b: float) -> dict:
        ops = {"add": a + b, "multiply": a * b, "subtract": a - b}
        if operation not in ops:
            raise ValueError(f"Unsupported operation: {operation}")
        return {"result": ops[operation]}

# Step 2: Process LLM output
async def main():
    await initialize()
    processor = ToolProcessor()

    # Your LLM returned this tool call
    llm_output = '<tool name="calculator" args=\'{"operation": "multiply", "a": 15, "b": 23}\'/>'

    # Process it
    results = await processor.process(llm_output)

    # Each result is a ToolExecutionResult with: tool, args, result, error, duration, cached
    # results[0].result contains the tool output
    # results[0].error contains any error message (None if successful)
    if results[0].error:
        print(f"Error: {results[0].error}")
    else:
        print(results[0].result)  # {'result': 345}

asyncio.run(main())

That's it. You now have production-ready tool execution with timeouts, retries, and caching.

Why not just use OpenAI tool calls? OpenAI's function calling is great for parsing, but you still need: parsing multiple formats (Anthropic XML, etc.), timeouts, retries, rate limits, caching, subprocess isolation, and connecting to external MCP servers. CHUK Tool Processor is that missing middle layer.

Choose Your Path

Your Goal What You Need Where to Look
Just process LLM tool calls Basic tool registration + processor 3-Minute Example
🔌 Connect to external tools MCP integration (HTTP/STDIO/SSE) MCP Integration
🛡️ Production deployment Timeouts, retries, rate limits, caching Production Configuration
🔒 Run untrusted code safely Subprocess isolation strategy Subprocess Strategy
📊 Monitor and observe Structured logging and metrics Observability
🌊 Stream incremental results StreamingTool pattern StreamingTool

Real-World Quick Start

Here are the most common patterns you'll use:

Pattern 1: Local tools only

import asyncio
from chuk_tool_processor.core.processor import ToolProcessor
from chuk_tool_processor.registry import initialize, register_tool

@register_tool(name="my_tool")
class MyTool:
    async def execute(self, arg: str) -> dict:
        return {"result": f"Processed: {arg}"}

async def main():
    await initialize()
    processor = ToolProcessor()

    llm_output = '<tool name="my_tool" args=\'{"arg": "hello"}\'/>'
    results = await processor.process(llm_output)
    print(results[0].result)  # {'result': 'Processed: hello'}

asyncio.run(main())

Pattern 2: Mix local + remote MCP tools (Notion)

import asyncio
from chuk_tool_processor.registry import initialize, register_tool
from chuk_tool_processor.mcp import setup_mcp_http_streamable

@register_tool(name="local_calculator")
class Calculator:
    async def execute(self, a: int, b: int) -> int:
        return a + b

async def main():
    # Register local tools first
    await initialize()

    # Then add Notion MCP tools (requires OAuth token)
    processor, manager = await setup_mcp_http_streamable(
        servers=[{
            "name": "notion",
            "url": "https://mcp.notion.com/mcp",
            "headers": {"Authorization": f"Bearer {access_token}"}
        }],
        namespace="notion",
        initialization_timeout=120.0
    )

    # Now you have both local and remote tools!
    results = await processor.process('''
        <tool name="local_calculator" args='{"a": 5, "b": 3}'/>
        <tool name="notion.search_pages" args='{"query": "project docs"}'/>
    ''')
    print(f"Local result: {results[0].result}")
    print(f"Notion result: {results[1].result}")

asyncio.run(main())

See examples/notion_oauth.py for complete OAuth flow.

Pattern 3: Local SQLite database via STDIO

import asyncio
import json
from chuk_tool_processor.mcp import setup_mcp_stdio

async def main():
    # Configure SQLite MCP server (runs locally)
    config = {
        "mcpServers": {
            "sqlite": {
                "command": "uvx",
                "args": ["mcp-server-sqlite", "--db-path", "./app.db"],
                "transport": "stdio"
            }
        }
    }

    with open("mcp_config.json", "w") as f:
        json.dump(config, f)

    processor, manager = await setup_mcp_stdio(
        config_file="mcp_config.json",
        servers=["sqlite"],
        namespace="db",
        initialization_timeout=120.0  # First run downloads the package
    )

    # Query your local database via MCP
    results = await processor.process(
        '<tool name="db.query" args=\'{"sql": "SELECT * FROM users LIMIT 10"}\'/>'
    )
    print(results[0].result)

asyncio.run(main())

See examples/stdio_sqlite.py for complete working example.

Core Concepts

1. Tool Registry

The registry is where you register tools for execution. Tools can be:

  • Simple classes with an async execute() method
  • ValidatedTool subclasses with Pydantic validation
  • StreamingTool for real-time incremental results
  • Functions registered via register_fn_tool()
from chuk_tool_processor.registry import register_tool
from chuk_tool_processor.models.validated_tool import ValidatedTool
from pydantic import BaseModel, Field

@register_tool(name="weather")
class WeatherTool(ValidatedTool):
    class Arguments(BaseModel):
        location: str = Field(..., description="City name")
        units: str = Field("celsius", description="Temperature units")

    class Result(BaseModel):
        temperature: float
        conditions: str

    async def _execute(self, location: str, units: str) -> Result:
        # Your weather API logic here
        return self.Result(temperature=22.5, conditions="Sunny")

2. Execution Strategies

Strategies determine how tools run:

Strategy Use Case Trade-offs
InProcessStrategy Fast, trusted tools Speed ✅, Isolation ❌
SubprocessStrategy Untrusted or risky code Isolation ✅, Speed ❌
import asyncio
from chuk_tool_processor.core.processor import ToolProcessor
from chuk_tool_processor.execution.strategies.subprocess_strategy import SubprocessStrategy
from chuk_tool_processor.registry import get_default_registry

async def main():
    registry = await get_default_registry()
    processor = ToolProcessor(
        strategy=SubprocessStrategy(
            registry=registry,
            max_workers=4,
            default_timeout=30.0
        )
    )
    # Use processor...

asyncio.run(main())

3. Execution Wrappers (Middleware)

Wrappers add production features as composable layers:

processor = ToolProcessor(
    enable_caching=True,         # Cache expensive calls
    cache_ttl=600,               # 10 minutes
    enable_rate_limiting=True,   # Prevent abuse
    global_rate_limit=100,       # 100 req/min globally
    enable_retries=True,         # Auto-retry failures
    max_retries=3                # Up to 3 attempts
)

The processor stacks them automatically: Cache → Rate Limit → Retry → Strategy → Tool

4. Input Parsers (Plugins)

Parsers extract tool calls from various LLM output formats:

XML Tags (Anthropic-style)

<tool name="search" args='{"query": "Python"}'/>

OpenAI tool_calls (JSON)

{
  "tool_calls": [
    {
      "type": "function",
      "function": {
        "name": "search",
        "arguments": "{\"query\": \"Python\"}"
      }
    }
  ]
}

Direct JSON (array of calls)

[
  { "tool": "search", "arguments": { "query": "Python" } }
]

All formats work automatically—no configuration needed.

Input Format Compatibility:

Format Example Use Case
XML Tool Tag <tool name="search" args='{"q":"Python"}'/> Anthropic Claude, XML-based LLMs
OpenAI tool_calls JSON object (above) OpenAI GPT-4 function calling
Direct JSON [{"tool": "search", "arguments": {"q": "Python"}}] Generic API integrations
Single dict {"tool": "search", "arguments": {"q": "Python"}} Programmatic calls

5. MCP Integration (External Tools)

Connect to remote tool servers using the Model Context Protocol. CHUK Tool Processor supports three transport mechanisms for different use cases:

HTTP Streamable (⭐ Recommended for Cloud Services)

Modern HTTP streaming transport for cloud-based MCP servers like Notion:

from chuk_tool_processor.mcp import setup_mcp_http_streamable

# Connect to Notion MCP with OAuth
servers = [
    {
        "name": "notion",
        "url": "https://mcp.notion.com/mcp",
        "headers": {"Authorization": f"Bearer {access_token}"}
    }
]

processor, manager = await setup_mcp_http_streamable(
    servers=servers,
    namespace="notion",
    initialization_timeout=120.0,  # Some services need time to initialize
    enable_caching=True,
    enable_retries=True
)

# Use Notion tools through MCP
results = await processor.process(
    '<tool name="notion.search_pages" args=\'{"query": "meeting notes"}\'/>'
)

STDIO (Best for Local/On-Device Tools)

For running local MCP servers as subprocesses—great for databases, file systems, and local tools:

from chuk_tool_processor.mcp import setup_mcp_stdio
import json

# Configure SQLite MCP server
config = {
    "mcpServers": {
        "sqlite": {
            "command": "uvx",
            "args": ["mcp-server-sqlite", "--db-path", "/path/to/database.db"],
            "env": {"MCP_SERVER_NAME": "sqlite"},
            "transport": "stdio"
        }
    }
}

# Save config to file
with open("mcp_config.json", "w") as f:
    json.dump(config, f)

# Connect to local SQLite server
processor, manager = await setup_mcp_stdio(
    config_file="mcp_config.json",
    servers=["sqlite"],
    namespace="db",
    initialization_timeout=120.0  # First run downloads packages
)

# Query your local database via MCP
results = await processor.process(
    '<tool name="db.query" args=\'{"sql": "SELECT * FROM users LIMIT 10"}\'/>'
)

SSE (Legacy Support)

For backward compatibility with older MCP servers using Server-Sent Events:

from chuk_tool_processor.mcp import setup_mcp_sse

# Connect to Atlassian with OAuth via SSE
servers = [
    {
        "name": "atlassian",
        "url": "https://mcp.atlassian.com/v1/sse",
        "headers": {"Authorization": f"Bearer {access_token}"}
    }
]

processor, manager = await setup_mcp_sse(
    servers=servers,
    namespace="atlassian",
    initialization_timeout=120.0
)

Transport Comparison:

Transport Use Case Real Examples
HTTP Streamable Cloud APIs, SaaS services Notion (mcp.notion.com)
STDIO Local tools, databases SQLite (mcp-server-sqlite), Echo (chuk-mcp-echo)
SSE Legacy cloud services Atlassian (mcp.atlassian.com)

Relationship with chuk-mcp:

  • chuk-mcp is a low-level MCP protocol client (handles transports, protocol negotiation)
  • chuk-tool-processor wraps chuk-mcp to integrate external tools into your execution pipeline
  • You can use local tools, remote MCP tools, or both in the same processor

Getting Started

Creating Tools

CHUK Tool Processor supports multiple patterns for defining tools:

Simple Function-Based Tools

from chuk_tool_processor.registry.auto_register import register_fn_tool
from datetime import datetime
from zoneinfo import ZoneInfo

def get_current_time(timezone: str = "UTC") -> str:
    """Get the current time in the specified timezone."""
    now = datetime.now(ZoneInfo(timezone))
    return now.strftime("%Y-%m-%d %H:%M:%S %Z")

# Register the function as a tool (sync — no await needed)
register_fn_tool(get_current_time, namespace="utilities")

ValidatedTool (Pydantic Type Safety)

For production tools, use Pydantic validation:

@register_tool(name="weather")
class WeatherTool(ValidatedTool):
    class Arguments(BaseModel):
        location: str = Field(..., description="City name")
        units: str = Field("celsius", description="Temperature units")

    class Result(BaseModel):
        temperature: float
        conditions: str

    async def _execute(self, location: str, units: str) -> Result:
        return self.Result(temperature=22.5, conditions="Sunny")

StreamingTool (Real-time Results)

For long-running operations that produce incremental results:

from chuk_tool_processor.models import StreamingTool

@register_tool(name="file_processor")
class FileProcessor(StreamingTool):
    class Arguments(BaseModel):
        file_path: str

    class Result(BaseModel):
        line: int
        content: str

    async def _stream_execute(self, file_path: str):
        with open(file_path) as f:
            for i, line in enumerate(f, 1):
                yield self.Result(line=i, content=line.strip())

Consuming streaming results:

import asyncio
from chuk_tool_processor.core.processor import ToolProcessor
from chuk_tool_processor.registry import initialize

async def main():
    await initialize()
    processor = ToolProcessor()
    async for event in processor.astream('<tool name="file_processor" args=\'{"file_path":"README.md"}\'/>'):
        # 'event' is a streamed chunk (either your Result model instance or a dict)
        line = event["line"] if isinstance(event, dict) else getattr(event, "line", None)
        content = event["content"] if isinstance(event, dict) else getattr(event, "content", None)
        print(f"Line {line}: {content}")

asyncio.run(main())

Using the Processor

Basic Usage

Call await initialize() once at startup to load your registry.

import asyncio
from chuk_tool_processor.core.processor import ToolProcessor
from chuk_tool_processor.registry import initialize

async def main():
    await initialize()
    processor = ToolProcessor()
    llm_output = '<tool name="calculator" args=\'{"operation":"add","a":2,"b":3}\'/>'
    results = await processor.process(llm_output)
    for result in results:
        if result.error:
            print(f"Error: {result.error}")
        else:
            print(f"Success: {result.result}")

asyncio.run(main())

Production Configuration

from chuk_tool_processor.core.processor import ToolProcessor

processor = ToolProcessor(
    # Execution settings
    default_timeout=30.0,
    max_concurrency=20,

    # Production features
    enable_caching=True,
    cache_ttl=600,
    enable_rate_limiting=True,
    global_rate_limit=100,
    enable_retries=True,
    max_retries=3
)

Advanced Topics

Using Subprocess Strategy

Use SubprocessStrategy when running untrusted, third-party, or potentially unsafe code that shouldn't share the same process as your main app.

For isolation and safety when running untrusted code:

import asyncio
from chuk_tool_processor.core.processor import ToolProcessor
from chuk_tool_processor.execution.strategies.subprocess_strategy import SubprocessStrategy
from chuk_tool_processor.registry import get_default_registry

async def main():
    registry = await get_default_registry()
    processor = ToolProcessor(
        strategy=SubprocessStrategy(
            registry=registry,
            max_workers=4,
            default_timeout=30.0
        )
    )
    # Use processor...

asyncio.run(main())

Real-World MCP Examples

Example 1: Notion Integration with OAuth

Complete OAuth flow connecting to Notion's MCP server:

from chuk_tool_processor.mcp import setup_mcp_http_streamable

# After completing OAuth flow (see examples/notion_oauth.py for full flow)
processor, manager = await setup_mcp_http_streamable(
    servers=[{
        "name": "notion",
        "url": "https://mcp.notion.com/mcp",
        "headers": {"Authorization": f"Bearer {access_token}"}
    }],
    namespace="notion",
    initialization_timeout=120.0
)

# Get available Notion tools
tools = manager.get_all_tools()
print(f"Available tools: {[t['name'] for t in tools]}")

# Use Notion tools in your LLM workflow
results = await processor.process(
    '<tool name="notion.search_pages" args=\'{"query": "Q4 planning"}\'/>'
)

Example 2: Local SQLite Database Access

Run SQLite MCP server locally for database operations:

from chuk_tool_processor.mcp import setup_mcp_stdio
import json

# Configure SQLite server
config = {
    "mcpServers": {
        "sqlite": {
            "command": "uvx",
            "args": ["mcp-server-sqlite", "--db-path", "./data/app.db"],
            "transport": "stdio"
        }
    }
}

with open("mcp_config.json", "w") as f:
    json.dump(config, f)

# Connect to local database
processor, manager = await setup_mcp_stdio(
    config_file="mcp_config.json",
    servers=["sqlite"],
    namespace="db",
    initialization_timeout=120.0  # First run downloads mcp-server-sqlite
)

# Query your database via LLM
results = await processor.process(
    '<tool name="db.query" args=\'{"sql": "SELECT COUNT(*) FROM users"}\'/>'
)

Example 3: Simple STDIO Echo Server

Minimal example for testing STDIO transport:

from chuk_tool_processor.mcp import setup_mcp_stdio
import json

# Configure echo server (great for testing)
config = {
    "mcpServers": {
        "echo": {
            "command": "uvx",
            "args": ["chuk-mcp-echo", "stdio"],
            "transport": "stdio"
        }
    }
}

with open("echo_config.json", "w") as f:
    json.dump(config, f)

processor, manager = await setup_mcp_stdio(
    config_file="echo_config.json",
    servers=["echo"],
    namespace="echo",
    initialization_timeout=60.0
)

# Test echo functionality
results = await processor.process(
    '<tool name="echo.echo" args=\'{"message": "Hello MCP!"}\'/>'
)

See examples/notion_oauth.py, examples/stdio_sqlite.py, and examples/stdio_echo.py for complete working implementations.

Observability

Structured Logging

Enable JSON logging for production observability:

import asyncio
from chuk_tool_processor.logging import setup_logging, get_logger

async def main():
    await setup_logging(
        level="INFO",
        structured=True,  # JSON output (structured=False for human-readable)
        log_file="tool_processor.log"
    )
    logger = get_logger("my_app")
    logger.info("logging ready")

asyncio.run(main())

When structured=True, logs are output as JSON. When structured=False, they're human-readable text.

Example JSON log output:

{
  "timestamp": "2025-01-15T10:30:45.123Z",
  "level": "INFO",
  "tool": "calculator",
  "status": "success",
  "duration_ms": 4.2,
  "cached": false,
  "attempts": 1
}

Automatic Metrics

Metrics are automatically collected for:

  • ✅ Tool execution (success/failure rates, duration)
  • ✅ Cache performance (hit/miss rates)
  • ✅ Parser accuracy (which parsers succeeded)
  • ✅ Retry attempts (how many retries per tool)

Access metrics programmatically:

import asyncio
from chuk_tool_processor.logging import metrics

async def main():
    # Metrics are logged automatically, but you can also access them
    await metrics.log_tool_execution(
        tool="custom_tool",
        success=True,
        duration=1.5,
        cached=False,
        attempts=1
    )

asyncio.run(main())

Error Handling

results = await processor.process(llm_output)

for result in results:
    if result.error:
        print(f"Tool '{result.tool}' failed: {result.error}")
        print(f"Duration: {result.duration}s")
    else:
        print(f"Tool '{result.tool}' succeeded: {result.result}")

Testing Tools

import pytest
from chuk_tool_processor.core.processor import ToolProcessor
from chuk_tool_processor.registry import initialize

@pytest.mark.asyncio
async def test_calculator():
    await initialize()
    processor = ToolProcessor()

    results = await processor.process(
        '<tool name="calculator" args=\'{"operation": "add", "a": 5, "b": 3}\'/>'
    )

    assert results[0].result["result"] == 8

Configuration

Environment Variables

Variable Default Description
CHUK_TOOL_REGISTRY_PROVIDER memory Registry backend
CHUK_DEFAULT_TIMEOUT 30.0 Default timeout (seconds)
CHUK_LOG_LEVEL INFO Logging level
CHUK_STRUCTURED_LOGGING true Enable JSON logging
MCP_BEARER_TOKEN - Bearer token for MCP SSE

ToolProcessor Options

processor = ToolProcessor(
    default_timeout=30.0,           # Timeout per tool
    max_concurrency=10,             # Max concurrent executions
    enable_caching=True,            # Result caching
    cache_ttl=300,                  # Cache TTL (seconds)
    enable_rate_limiting=False,     # Rate limiting
    global_rate_limit=None,         # (requests per minute) global cap
    enable_retries=True,            # Auto-retry failures
    max_retries=3,                  # Max retry attempts
    # Optional per-tool rate limits: {"tool.name": (requests, per_seconds)}
    tool_rate_limits=None
)

Performance & Tuning

Parameter Default When to Adjust
default_timeout 30.0 Increase for slow tools (e.g., AI APIs)
max_concurrency 10 Increase for I/O-bound tools, decrease for CPU-bound
enable_caching True Keep on for deterministic tools
cache_ttl 300 Longer for stable data, shorter for real-time
enable_rate_limiting False Enable when hitting API rate limits
global_rate_limit None Set a global requests/min cap across all tools
enable_retries True Disable for non-idempotent operations
max_retries 3 Increase for flaky external APIs
tool_rate_limits None Dict mapping tool name → (max_requests, window_seconds). Overrides global_rate_limit per tool

Per-tool rate limiting example:

processor = ToolProcessor(
    enable_rate_limiting=True,
    global_rate_limit=100,  # 100 requests/minute across all tools
    tool_rate_limits={
        "notion.search_pages": (10, 60),  # 10 requests per 60 seconds
        "expensive_api": (5, 60),          # 5 requests per minute
        "local_tool": (1000, 60),          # 1000 requests per minute (local is fast)
    }
)

Security Model

CHUK Tool Processor provides multiple layers of safety:

Concern Protection Configuration
Timeouts Every tool has a timeout default_timeout=30.0
Process Isolation Run tools in separate processes strategy=SubprocessStrategy()
Rate Limiting Prevent abuse and API overuse enable_rate_limiting=True
Input Validation Pydantic validation on arguments Use ValidatedTool
Error Containment Failures don't crash the processor Built-in exception handling
Retry Limits Prevent infinite retry loops max_retries=3

Important Security Notes:

  • Environment Variables: Subprocess strategy inherits the parent process environment by default. For stricter isolation, use container-level controls (Docker, cgroups).
  • Network Access: Tools inherit network access from the host. For network isolation, use OS-level sandboxing (containers, network namespaces, firewalls).
  • Resource Limits: For hard CPU/memory caps, use OS-level controls (cgroups on Linux, Job Objects on Windows, or Docker resource limits).
  • Secrets: Never injected automatically. Pass secrets explicitly via tool arguments or environment variables, and prefer scoped env vars for subprocess tools to minimize exposure.

Example security-focused setup for untrusted code:

import asyncio
from chuk_tool_processor.core.processor import ToolProcessor
from chuk_tool_processor.execution.strategies.subprocess_strategy import SubprocessStrategy
from chuk_tool_processor.registry import get_default_registry

async def create_secure_processor():
    # Maximum isolation for untrusted code
    # Runs each tool in a separate process
    registry = await get_default_registry()

    processor = ToolProcessor(
        strategy=SubprocessStrategy(
            registry=registry,
            max_workers=4,
            default_timeout=10.0
        ),
        default_timeout=10.0,
        enable_rate_limiting=True,
        global_rate_limit=50,  # 50 requests/minute
        max_retries=2
    )
    return processor

# For even stricter isolation:
# - Run the entire processor inside a Docker container with resource limits
# - Use network policies to restrict outbound connections
# - Use read-only filesystems where possible

Architecture Principles

  1. Composability: Stack strategies and wrappers like middleware
  2. Async-First: Built for async/await from the ground up
  3. Production-Ready: Timeouts, retries, caching, rate limiting—all built-in
  4. Pluggable: Parsers, strategies, transports—swap components as needed
  5. Observable: Structured logging and metrics collection throughout

Examples

Check out the examples/ directory for complete working examples:

Getting Started

  • Quick start: examples/quickstart_demo.py - Basic tool registration and execution
  • Execution strategies: examples/execution_strategies_demo.py - InProcess vs Subprocess
  • Production wrappers: examples/wrappers_demo.py - Caching, retries, rate limiting
  • Streaming tools: examples/streaming_demo.py - Real-time incremental results

MCP Integration (Real-World)

  • Notion + OAuth: examples/notion_oauth.py - Complete OAuth 2.1 flow with HTTP Streamable
    • Shows: Authorization Server discovery, client registration, PKCE flow, token exchange
  • SQLite Local: examples/stdio_sqlite.py - Local database access via STDIO
    • Shows: Command/args passing, environment variables, file paths, initialization timeouts
  • Echo Server: examples/stdio_echo.py - Minimal STDIO transport example
    • Shows: Simplest possible MCP integration for testing
  • Atlassian + OAuth: examples/atlassian_sse.py - OAuth with SSE transport (legacy)

Advanced MCP

  • HTTP Streamable: examples/mcp_http_streamable_example.py
  • STDIO: examples/mcp_stdio_example.py
  • SSE: examples/mcp_sse_example.py
  • Plugin system: examples/plugins_builtins_demo.py, examples/plugins_custom_parser_demo.py

FAQ

Q: What happens if a tool takes too long? A: The tool is cancelled after default_timeout seconds and returns an error result. The processor continues with other tools.

Q: Can I mix local and remote (MCP) tools? A: Yes! Register local tools first, then use setup_mcp_* to add remote tools. They all work in the same processor.

Q: How do I handle malformed LLM outputs? A: The processor is resilient—invalid tool calls are logged and return error results without crashing.

Q: What about API rate limits? A: Use enable_rate_limiting=True and set tool_rate_limits per tool or global_rate_limit for all tools.

Q: Can tools return files or binary data? A: Yes—tools can return any JSON-serializable data including base64-encoded files, URLs, or structured data.

Q: How do I test my tools? A: Use pytest with @pytest.mark.asyncio. See Testing Tools for examples.

Q: Does this work with streaming LLM responses? A: Yes—as tool calls appear in the stream, extract and process them. The processor handles partial/incremental tool call lists.

Q: What's the difference between InProcess and Subprocess strategies? A: InProcess is faster (same process), Subprocess is safer (isolated process). Use InProcess for trusted code, Subprocess for untrusted.

Comparison with Other Tools

Feature chuk-tool-processor LangChain Tools OpenAI Tools MCP SDK
Async-native ⚠️ Partial
Process isolation ✅ SubprocessStrategy ⚠️
Built-in retries ❌ †
Rate limiting ❌ † ⚠️
Caching ⚠️ ❌ ‡
Multiple parsers ✅ (XML, OpenAI, JSON) ⚠️
Streaming tools ⚠️ ⚠️
MCP integration ✅ All transports ✅ (protocol only)
Zero-config start ⚠️
Production-ready ✅ Timeouts, metrics ⚠️ ⚠️ ⚠️

Notes:

  • † LangChain offers caching and rate-limiting through separate libraries (langchain-cache, external rate limiters), but they're not core features.
  • ‡ OpenAI Tools can be combined with external rate limiters and caches, but tool execution itself doesn't include these features.

When to use chuk-tool-processor:

  • You need production-ready tool execution (timeouts, retries, caching)
  • You want to connect to MCP servers (local or remote)
  • You need to run untrusted code safely (subprocess isolation)
  • You're building a custom LLM application (not using a framework)

When to use alternatives:

  • LangChain: You want a full-featured LLM framework with chains, agents, and memory
  • OpenAI Tools: You only use OpenAI and don't need advanced execution features
  • MCP SDK: You're building an MCP server, not a client

Related Projects

  • chuk-mcp: Low-level Model Context Protocol client
    • Powers the MCP transport layer in chuk-tool-processor
    • Use directly if you need protocol-level control
    • Use chuk-tool-processor if you want high-level tool execution

Contributing & Support


Remember: CHUK Tool Processor is the missing link between LLM outputs and reliable tool execution. It's not trying to be everything—it's trying to be the best at one thing: processing tool calls in production.

Built with ❤️ by the CHUK AI team for the LLM tool integration community.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published