-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Address edge GetMemInfo edge cases #26021
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
- input propagates to output - output is produced by an initialier.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Pull Request Overview
This PR addresses edge cases in the GetMemInfo functionality related to model inputs and outputs in contrived test scenarios. It fixes issues where input values propagate directly to outputs and where outputs are produced by constant initializers.
- Enhanced memory info retrieval logic to handle edge cases in input/output relationships
- Added comprehensive error handling for outputs produced by initializers or direct input propagation
- Added null checks to prevent API calls when input/output counts are zero
Reviewed Changes
Copilot reviewed 3 out of 4 changed files in this pull request and generated 2 comments.
| File | Description |
|---|---|
| onnxruntime/test/shared_lib/test_inference.cc | Added tests for input pass-through and sparse output scenarios |
| onnxruntime/core/session/inference_session.cc | Enhanced GetInputOutputMemoryInfo with fallback logic for edge cases |
| include/onnxruntime/core/session/onnxruntime_cxx_inline.h | Added null checks before API calls in memory info methods |
Tip: Customize your code reviews with copilot-instructions.md. Create the file or learn how to get started.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
![]()
| import sys | ||
|
|
||
| import numpy as np | ||
| import onnx |
Check notice
Code scanning / CodeQL
Module is imported with 'import' and 'import from' Note test
Module 'onnxruntime.test.onnx' is imported with both 'import' and 'import from'.
Show autofix suggestion
Hide autofix suggestion
Copilot Autofix
AI about 1 month ago
To fix the problem, remove the line from onnx import TensorProto, helper, numpy_helper (line 12) and replace all occurrences of TensorProto, helper, and numpy_helper with onnx.TensorProto, onnx.helper, and onnx.numpy_helper respectively, throughout the code snippet. This ensures code clarity and avoids confusion as recommended, and no APIs should change. The only file to be changed is onnxruntime/test/testdata/test_dangling_input_segment_ids.py. No new imports or definitions are needed, just refactoring for proper qualification.
-
Copy modified line R22 -
Copy modified line R30 -
Copy modified lines R36-R37 -
Copy modified lines R42-R43 -
Copy modified lines R46-R47 -
Copy modified line R50 -
Copy modified line R54 -
Copy modified line R58 -
Copy modified line R65
| @@ -9,7 +9,6 @@ | ||
|
|
||
| import numpy as np | ||
| import onnx | ||
| from onnx import TensorProto, helper, numpy_helper | ||
|
|
||
| DATA_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_dangling_input_segment_ids") | ||
|
|
||
| @@ -20,7 +19,7 @@ | ||
|
|
||
|
|
||
| def make_node(op_type, inputs, outputs, name=None, doc_string=None, domain=None, **kwargs): | ||
| node = helper.make_node(op_type, inputs, outputs, name, doc_string, domain, **kwargs) | ||
| node = onnx.helper.make_node(op_type, inputs, outputs, name, doc_string, domain, **kwargs) | ||
| if doc_string == "": | ||
| node.doc_string = "" | ||
| order_repeated_field(node.attribute, "name", kwargs.keys()) | ||
| @@ -28,42 +27,42 @@ | ||
|
|
||
|
|
||
| def make_graph(*args, doc_string=None, **kwargs): | ||
| graph = helper.make_graph(*args, doc_string=doc_string, **kwargs) | ||
| graph = onnx.helper.make_graph(*args, doc_string=doc_string, **kwargs) | ||
| if doc_string == "": | ||
| graph.doc_string = "" | ||
| return graph | ||
|
|
||
|
|
||
| model = helper.make_model( | ||
| opset_imports=[helper.make_operatorsetid("", 14), helper.make_operatorsetid("com.microsoft", 1)], | ||
| model = onnx.helper.make_model( | ||
| opset_imports=[onnx.helper.make_operatorsetid("", 14), onnx.helper.make_operatorsetid("com.microsoft", 1)], | ||
| ir_version=7, | ||
| graph=make_graph( | ||
| name="embed_layernorm_graph", | ||
| inputs=[ | ||
| helper.make_tensor_value_info("input_ids", TensorProto.INT32, shape=[1, 4]), | ||
| helper.make_tensor_value_info("segment_ids", TensorProto.INT32, shape=[1, 4]), | ||
| onnx.helper.make_tensor_value_info("input_ids", onnx.TensorProto.INT32, shape=[1, 4]), | ||
| onnx.helper.make_tensor_value_info("segment_ids", onnx.TensorProto.INT32, shape=[1, 4]), | ||
| ], | ||
| outputs=[ | ||
| helper.make_tensor_value_info("layernorm_out", TensorProto.FLOAT, shape=[1, 4, 4]), | ||
| helper.make_tensor_value_info("mask_index_out", TensorProto.INT32, shape=[1]), | ||
| onnx.helper.make_tensor_value_info("layernorm_out", onnx.TensorProto.FLOAT, shape=[1, 4, 4]), | ||
| onnx.helper.make_tensor_value_info("mask_index_out", onnx.TensorProto.INT32, shape=[1]), | ||
| ], | ||
| initializer=[ | ||
| numpy_helper.from_array( | ||
| onnx.numpy_helper.from_array( | ||
| np.load(os.path.join(DATA_DIR, "const0_word_embed.npy")).astype("float32").reshape([32, 4]), | ||
| name="word_embed", | ||
| ), | ||
| numpy_helper.from_array( | ||
| onnx.numpy_helper.from_array( | ||
| np.load(os.path.join(DATA_DIR, "const1_pos_embed.npy")).astype("float32").reshape([16, 4]), | ||
| name="pos_embed", | ||
| ), | ||
| numpy_helper.from_array( | ||
| onnx.numpy_helper.from_array( | ||
| np.array( | ||
| [0.6185135841369629, 0.010364261455833912, 0.5386272668838501, 0.0030179566238075495], | ||
| dtype="float32", | ||
| ), | ||
| name="gamma", | ||
| ), | ||
| numpy_helper.from_array( | ||
| onnx.numpy_helper.from_array( | ||
| np.array( | ||
| [0.9511938095092773, 0.9054020047187805, 0.7959669232368469, 0.9152743220329285], dtype="float32" | ||
| ), |
### Description <!-- Describe your changes. --> This pull request introduces several enhancements to ONNX Runtime's Python and C++ APIs, focusing on improved device and memory information handling, synchronization stream support, and tensor copy functionality. It adds new Python bindings for device/memory types, exposes more detailed session input/output metadata, and provides a Python-accessible tensor copy API. The changes also refactor and extend the C++ API for better stream and memory info management. Key changes include: ### Device and Memory Information Enhancements * Added Python bindings for `OrtMemoryInfoDeviceType`, `OrtDeviceMemoryType`, and expanded `OrtDevice` to expose the memory type via a new `mem_type` method. The `OrtMemoryInfo` Python class now supports both legacy and new V2 constructors and exposes additional properties such as device memory type and vendor ID. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1801-R1810) [[2]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1839) [[3]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eL1941-R2005) * Extended the Python `InferenceSession` object to provide access to input/output `OrtMemoryInfo` and `OrtEpDevice` objects through new properties and methods. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR2702-R2729) [[2]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR202-R213) [[3]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR591-R593) [[4]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR607-R609) ### Synchronization Stream and Execution Provider Device Support * Introduced Python bindings for `OrtSyncStream`, including creation via `OrtEpDevice.create_sync_stream()` and retrieval of device-specific `OrtMemoryInfo` via `OrtEpDevice.memory_info()`. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1890-R1938) [[2]](diffhunk://#diff-44e70fbe60cba71c94f1a46ec2b1facaa8e9475232dad6df5ecbea301e76d475R34-R44) * Refactored the C++ API to generalize `SyncStream` handling, allowing for unowned streams and improved type safety. [[1]](diffhunk://#diff-17f64e8b38fcdcd25e90abcabeec4b420956b15fe63868a5d0b270c376bde209L1066-R1084) [[2]](diffhunk://#diff-cc93f5f9d8078d3d3af14c9bb4c0c59e25a99f3ec75d7772ea20111ed7eb6ddeL672-R677) ### Tensor Copy Functionality * Added a new Python-level `copy_tensors` function and corresponding C++ binding, enabling efficient copying of tensor data between `OrtValue` objects, optionally using a synchronization stream. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1588-R1599) [[2]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR1155-R1163) [[3]](diffhunk://#diff-44e70fbe60cba71c94f1a46ec2b1facaa8e9475232dad6df5ecbea301e76d475R84) ### Miscellaneous Improvements and Fixes * Changed the return type of the `OrtValue.data_ptr` method in the Python binding from `int64_t` to `uintptr_t` for better cross-platform compatibility. [[1]](diffhunk://#diff-666c9002698d1bbd4215237231e5be98d7b33e5054f018dce952407027bd0473L336-R336) [[2]](diffhunk://#diff-666c9002698d1bbd4215237231e5be98d7b33e5054f018dce952407027bd0473L347-R347) * Minor improvements to error messages and device type handling in the Python API (e.g., for `OrtDevice`). [[1]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR1176) [[2]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR1219-R1221) * Included necessary C++ includes for plugin stream support. These changes collectively improve the flexibility and introspection capabilities of ONNX Runtime's device, memory, and execution provider interfaces, and make advanced features available to Python users. ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. --> Depends on: #26021
### Description <!-- Describe your changes. --> This fixes somewhat contrived edgecases that are present in our tests - input propagates to output - output is produced by an initializer. ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. --> Python API upcoming PR does not pass tests without it.
### Description <!-- Describe your changes. --> This pull request introduces several enhancements to ONNX Runtime's Python and C++ APIs, focusing on improved device and memory information handling, synchronization stream support, and tensor copy functionality. It adds new Python bindings for device/memory types, exposes more detailed session input/output metadata, and provides a Python-accessible tensor copy API. The changes also refactor and extend the C++ API for better stream and memory info management. Key changes include: ### Device and Memory Information Enhancements * Added Python bindings for `OrtMemoryInfoDeviceType`, `OrtDeviceMemoryType`, and expanded `OrtDevice` to expose the memory type via a new `mem_type` method. The `OrtMemoryInfo` Python class now supports both legacy and new V2 constructors and exposes additional properties such as device memory type and vendor ID. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1801-R1810) [[2]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1839) [[3]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eL1941-R2005) * Extended the Python `InferenceSession` object to provide access to input/output `OrtMemoryInfo` and `OrtEpDevice` objects through new properties and methods. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR2702-R2729) [[2]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR202-R213) [[3]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR591-R593) [[4]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR607-R609) ### Synchronization Stream and Execution Provider Device Support * Introduced Python bindings for `OrtSyncStream`, including creation via `OrtEpDevice.create_sync_stream()` and retrieval of device-specific `OrtMemoryInfo` via `OrtEpDevice.memory_info()`. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1890-R1938) [[2]](diffhunk://#diff-44e70fbe60cba71c94f1a46ec2b1facaa8e9475232dad6df5ecbea301e76d475R34-R44) * Refactored the C++ API to generalize `SyncStream` handling, allowing for unowned streams and improved type safety. [[1]](diffhunk://#diff-17f64e8b38fcdcd25e90abcabeec4b420956b15fe63868a5d0b270c376bde209L1066-R1084) [[2]](diffhunk://#diff-cc93f5f9d8078d3d3af14c9bb4c0c59e25a99f3ec75d7772ea20111ed7eb6ddeL672-R677) ### Tensor Copy Functionality * Added a new Python-level `copy_tensors` function and corresponding C++ binding, enabling efficient copying of tensor data between `OrtValue` objects, optionally using a synchronization stream. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1588-R1599) [[2]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR1155-R1163) [[3]](diffhunk://#diff-44e70fbe60cba71c94f1a46ec2b1facaa8e9475232dad6df5ecbea301e76d475R84) ### Miscellaneous Improvements and Fixes * Changed the return type of the `OrtValue.data_ptr` method in the Python binding from `int64_t` to `uintptr_t` for better cross-platform compatibility. [[1]](diffhunk://#diff-666c9002698d1bbd4215237231e5be98d7b33e5054f018dce952407027bd0473L336-R336) [[2]](diffhunk://#diff-666c9002698d1bbd4215237231e5be98d7b33e5054f018dce952407027bd0473L347-R347) * Minor improvements to error messages and device type handling in the Python API (e.g., for `OrtDevice`). [[1]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR1176) [[2]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR1219-R1221) * Included necessary C++ includes for plugin stream support. These changes collectively improve the flexibility and introspection capabilities of ONNX Runtime's device, memory, and execution provider interfaces, and make advanced features available to Python users. ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. --> Depends on: #26021
### Description <!-- Describe your changes. --> This fixes somewhat contrived edgecases that are present in our tests - input propagates to output - output is produced by an initializer. ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. --> Python API upcoming PR does not pass tests without it.
### Description <!-- Describe your changes. --> This pull request introduces several enhancements to ONNX Runtime's Python and C++ APIs, focusing on improved device and memory information handling, synchronization stream support, and tensor copy functionality. It adds new Python bindings for device/memory types, exposes more detailed session input/output metadata, and provides a Python-accessible tensor copy API. The changes also refactor and extend the C++ API for better stream and memory info management. Key changes include: ### Device and Memory Information Enhancements * Added Python bindings for `OrtMemoryInfoDeviceType`, `OrtDeviceMemoryType`, and expanded `OrtDevice` to expose the memory type via a new `mem_type` method. The `OrtMemoryInfo` Python class now supports both legacy and new V2 constructors and exposes additional properties such as device memory type and vendor ID. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1801-R1810) [[2]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1839) [[3]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eL1941-R2005) * Extended the Python `InferenceSession` object to provide access to input/output `OrtMemoryInfo` and `OrtEpDevice` objects through new properties and methods. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR2702-R2729) [[2]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR202-R213) [[3]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR591-R593) [[4]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR607-R609) ### Synchronization Stream and Execution Provider Device Support * Introduced Python bindings for `OrtSyncStream`, including creation via `OrtEpDevice.create_sync_stream()` and retrieval of device-specific `OrtMemoryInfo` via `OrtEpDevice.memory_info()`. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1890-R1938) [[2]](diffhunk://#diff-44e70fbe60cba71c94f1a46ec2b1facaa8e9475232dad6df5ecbea301e76d475R34-R44) * Refactored the C++ API to generalize `SyncStream` handling, allowing for unowned streams and improved type safety. [[1]](diffhunk://#diff-17f64e8b38fcdcd25e90abcabeec4b420956b15fe63868a5d0b270c376bde209L1066-R1084) [[2]](diffhunk://#diff-cc93f5f9d8078d3d3af14c9bb4c0c59e25a99f3ec75d7772ea20111ed7eb6ddeL672-R677) ### Tensor Copy Functionality * Added a new Python-level `copy_tensors` function and corresponding C++ binding, enabling efficient copying of tensor data between `OrtValue` objects, optionally using a synchronization stream. [[1]](diffhunk://#diff-c46fc0e05521f706449c04aed599ac0229012c007a78b584519e71a57601d63eR1588-R1599) [[2]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR1155-R1163) [[3]](diffhunk://#diff-44e70fbe60cba71c94f1a46ec2b1facaa8e9475232dad6df5ecbea301e76d475R84) ### Miscellaneous Improvements and Fixes * Changed the return type of the `OrtValue.data_ptr` method in the Python binding from `int64_t` to `uintptr_t` for better cross-platform compatibility. [[1]](diffhunk://#diff-666c9002698d1bbd4215237231e5be98d7b33e5054f018dce952407027bd0473L336-R336) [[2]](diffhunk://#diff-666c9002698d1bbd4215237231e5be98d7b33e5054f018dce952407027bd0473L347-R347) * Minor improvements to error messages and device type handling in the Python API (e.g., for `OrtDevice`). [[1]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR1176) [[2]](diffhunk://#diff-f0e8ba8cb8cb07b51b3be675bf62cec07e2eae1461341ce5801d33a57c8f57fdR1219-R1221) * Included necessary C++ includes for plugin stream support. These changes collectively improve the flexibility and introspection capabilities of ONNX Runtime's device, memory, and execution provider interfaces, and make advanced features available to Python users. ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. --> Depends on: #26021
### Description Cherry-pick the following PRs into the ORT 1.23.1 branch: - Fix Attention GQA implementation on CPU - **MANUAL MERGE**: see #26057 - main merge date: Sept 15, 11:33am - pr: #25966 - commit: d530b29 - Address edge GetMemInfo edge cases - main merge date: Sept 16, 10:32am - pr: #26021 - commit: d251f3a - Implement new Python APIs - main merge date: Sept 17, 11:44am - pr: #25999 - commit: abc63e8 - MemcpyFromHost and MemcpyToHost support for plugin EPs - **MERGE CONFLICT** on file onnxruntime/test/optimizer/transpose_optimizer_test.cc. Conflicts with #25689 - main merge date: Sept 23, 10:42am - pr: #26088 - commit: 4545732 - [TRT RTX EP] Fix bug for generating the correct subgraph in GetCapability #26132 - main merge date: Sept 23, 8:54pm - pr: #26132 - commit: 72e56e7 ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. --> --------- Co-authored-by: Dmitri Smirnov <yuslepukhin@users.noreply.github.com> Co-authored-by: Edward Chen <18449977+edgchen1@users.noreply.github.com> Co-authored-by: Chi Lo <54722500+chilo-ms@users.noreply.github.com>
### Description - Regenerates the `input_propagate_to_output.onnx` model used in [this unit test](https://github.com/microsoft/onnxruntime/blob/35dcab5088118117acc6086c9b6dd6dd92c7060f/onnxruntime/test/shared_lib/test_inference.cc#L497-L506) so that it uses an ONNX IR version compatible with ONNX 1.18.0 (i.e., IR version < 12). - Adds script `input_propagate_to_output.py` that can be used to regenerate the `input_propagate_to_output.onnx` model. - Embed missing weight values that are needed to run the existing `test_dangling_input_segment_ids.py` script. ### Motivation and Context The main branch is using ONNX 1.19. However, this unit test also needs to pass in the `rel-1.23.1` branch, which is still using ONNX 1.18.0. So, by downgrading the model's IR version, the unit test can run in both branches. See original PR that added the test models: #26021
|
This PR has been cherry-picked into the |
### Description - Regenerates the `input_propagate_to_output.onnx` model used in [this unit test](https://github.com/microsoft/onnxruntime/blob/35dcab5088118117acc6086c9b6dd6dd92c7060f/onnxruntime/test/shared_lib/test_inference.cc#L497-L506) so that it uses an ONNX IR version compatible with ONNX 1.18.0 (i.e., IR version < 12). - Adds script `input_propagate_to_output.py` that can be used to regenerate the `input_propagate_to_output.onnx` model. - Embed missing weight values that are needed to run the existing `test_dangling_input_segment_ids.py` script. ### Motivation and Context The main branch is using ONNX 1.19. However, this unit test also needs to pass in the `rel-1.23.1` branch, which is still using ONNX 1.18.0. So, by downgrading the model's IR version, the unit test can run in both branches. See original PR that added the test models: #26021
* ORT 1.23.1 cherrypick 1 [REDO] (microsoft#26140) ### Description Cherry-pick the following PRs into the ORT 1.23.1 branch: - Fix Attention GQA implementation on CPU - **MANUAL MERGE**: see microsoft#26057 - main merge date: Sept 15, 11:33am - pr: microsoft#25966 - commit: d530b29 - Address edge GetMemInfo edge cases - main merge date: Sept 16, 10:32am - pr: microsoft#26021 - commit: d251f3a - Implement new Python APIs - main merge date: Sept 17, 11:44am - pr: microsoft#25999 - commit: abc63e8 - MemcpyFromHost and MemcpyToHost support for plugin EPs - **MERGE CONFLICT** on file onnxruntime/test/optimizer/transpose_optimizer_test.cc. Conflicts with microsoft#25689 - main merge date: Sept 23, 10:42am - pr: microsoft#26088 - commit: 4545732 - [TRT RTX EP] Fix bug for generating the correct subgraph in GetCapability microsoft#26132 - main merge date: Sept 23, 8:54pm - pr: microsoft#26132 - commit: 72e56e7 ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. --> --------- Co-authored-by: Dmitri Smirnov <yuslepukhin@users.noreply.github.com> Co-authored-by: Edward Chen <18449977+edgchen1@users.noreply.github.com> Co-authored-by: Chi Lo <54722500+chilo-ms@users.noreply.github.com> * ORT 1.23.1 cherrypick 2 (microsoft#26182) ### Description Adds the following commits to the `rel-1.23.1` branch for ORT 1.23.1: - add session_id_ to LogEvaluationStart/Stop, LogSessionCreationStart - main merge date: July 31, 1:05am - pr: microsoft#25590 - commit: e753643 - [build] fix WebAssembly build on macOS/arm64 - main merge date: Aug 5, 8:07am - pr: microsoft#25653 - commit: 53f152b - [CPU] MoE Kernel (microsoft#25958) - main merge date: Sept 10, 4:54pm - pr: microsoft#25958 - commit: 930e640 - [CPU] Block-wise QMoE kernel for CPU - main merge date: Sept 15, 8:32am - pr: microsoft#26009 - commit: 5d17734 - [C#] Implement missing APIs - main merge date: Sept 24, 10:50am - pr: microsoft#26101 - commit: 35dcab5 - Regenerate test model with ONNX IR < 12 - main merge date: Sept 24, 2:50pm - pr: microsoft#26149 - commit: 88f2652 - [CPU] Fix compilation errors because of unused variables - main merge date: Sept 25, 1:21pm - pr: microsoft#26147 - commit: 42fcd71 - [EP ABI] Check if nodes specified in GetCapability() have already been assigned - main merge date: Sept 26, 1:24am - pr: microsoft#26156 - commit: 67d3ba0 - [QNN EP] Add dynamic option to set HTP performance mode - main merge date: Sept 26, 11:55am - pr: microsoft#26135 - commit: 6cc40fd --------- Co-authored-by: xieofxie <xieofxie@126.com> Co-authored-by: hualxie <hualxie@microsoft.com> Co-authored-by: Yulong Wang <7679871+fs-eire@users.noreply.github.com> Co-authored-by: Akshay Sonawane <111780983+apsonawane@users.noreply.github.com> Co-authored-by: Dmitri Smirnov <yuslepukhin@users.noreply.github.com> Co-authored-by: Edward Chen <18449977+edgchen1@users.noreply.github.com> Co-authored-by: quic-tirupath <quic_tirupath@quicinc.com> Co-authored-by: quic-ashwshan <quic_ashwshan@quicinc.com> --------- Co-authored-by: Adrian Lizarraga <adlizarraga@microsoft.com> Co-authored-by: Dmitri Smirnov <yuslepukhin@users.noreply.github.com> Co-authored-by: Edward Chen <18449977+edgchen1@users.noreply.github.com> Co-authored-by: Chi Lo <54722500+chilo-ms@users.noreply.github.com> Co-authored-by: xieofxie <xieofxie@126.com> Co-authored-by: hualxie <hualxie@microsoft.com> Co-authored-by: Yulong Wang <7679871+fs-eire@users.noreply.github.com> Co-authored-by: Akshay Sonawane <111780983+apsonawane@users.noreply.github.com> Co-authored-by: quic-tirupath <quic_tirupath@quicinc.com> Co-authored-by: quic-ashwshan <quic_ashwshan@quicinc.com>
Description
This fixes somewhat contrived edgecases that are present in our tests
Motivation and Context
Python API upcoming PR does not pass tests without it.