-
Notifications
You must be signed in to change notification settings - Fork 25.7k
[TP][Inference] Enable DTensor TP inference #110751
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
[ghstack-poisoned]
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/110751
Note: Links to docs will display an error until the docs builds have been completed. ✅ You can merge normally! (4 Unrelated Failures)As of commit 7e716a8 with merge base a3e5ec4 ( FLAKY - The following jobs failed but were likely due to flakiness present on trunk:
UNSTABLE - The following jobs failed but were likely due to flakiness present on trunk and has been marked as unstable:
This comment was automatically generated by Dr. CI and updates every 15 minutes. |
In #109977, we observed that during inference mode, aten.Linear does not get decomposed. So instead of enabling sharding propagation for linear op, we use func.decompose so that it gets decomposed to matmul and mm. [ghstack-poisoned]
In #109977, we observed that during inference mode, aten.Linear does not get decomposed. So instead of enabling sharding propagation for linear op, we use func.decompose so that it gets decomposed to matmul and mm. [ghstack-poisoned]
In #109977, we observed that during inference mode, aten.Linear does not get decomposed. So instead of enabling sharding propagation for linear op, we use func.decompose so that it gets decomposed to matmul and mm. [ghstack-poisoned]
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
left light comments but lgtm!
In #109977, we observed that during inference mode, aten.Linear does not get decomposed. So instead of enabling sharding propagation for linear op, we use func.decompose so that it gets decomposed to matmul and mm. [ghstack-poisoned]
|
@pytorchbot merge |
Merge failedReason: This PR needs a If not, please add the To add a label, you can comment to pytorchbot, for example For more information, see Details for Dev Infra teamRaised by workflow job |
In #109977, we observed that during inference mode, aten.Linear does not get decomposed. So instead of enabling sharding propagation for linear op, we use func.decompose so that it gets decomposed to matmul and mm. [ghstack-poisoned]
In #109977, we observed that during inference mode, aten.Linear does not get decomposed. So instead of enabling sharding propagation for linear op, we use func.decompose so that it gets decomposed to matmul and mm. [ghstack-poisoned]
|
@pytorchbot merge -f "The failing test are not related to this PR." |
Merge startedYour change will be merged immediately since you used the force (-f) flag, bypassing any CI checks (ETA: 1-5 minutes). Please use Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
Stack from ghstack (oldest at bottom):
In #109977, we observed that during inference mode, aten.Linear does not get decomposed. So instead of enabling sharding propagation for linear op, we use func.decompose so that it gets decomposed to matmul and mm.