-
Notifications
You must be signed in to change notification settings - Fork 25.7k
[sparse][semi-structured] Add float8 dtype support to 24 sparsity #136397
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/136397
Note: Links to docs will display an error until the docs builds have been completed. ❌ 1 New FailureAs of commit 4497986 with merge base 803ce50 ( NEW FAILURE - The following job has failed:
This comment was automatically generated by Dr. CI and updates every 15 minutes. |
…parsity" Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
…parsity" Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
…parsity" Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
…parsity" Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
…parsity" Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
…parsity" Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
…parsity" Summary: This PR adds float8 support to cuSPARSELt and `to_sparse_semi_structured`. Support for this op happens through `torch._scaled_mm`. It also turns on cuSPARSELt by default and adds CUSPARSELT_MAX_ID to the backend. Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: This PR adds float8 support to cuSPARSELt and `to_sparse_semi_structured`. Support for this op happens through `torch._scaled_mm`. It also turns on cuSPARSELt by default and adds CUSPARSELT_MAX_ID to the backend. Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: f1d68cf Pull Request resolved: #136397
…parsity"
Summary:
This PR adds `torch.float8e4m3fn` support to cuSPARSELt and `to_sparse_semi_structured`.
This will let users to run fp8 + 2:4 sparse matmuls on Hopper GPUs with
cusparselt >= 0.6.2, via to `scaled_mm` API.
```
A = rand_sparse_semi_structured_mask(256, 128, dtype=torch.float16)
B = torch.rand(dense_input_shape, device=device).to(torch.float16).t()
A_fp8, A_scale = to_float8(A)
B_fp8, B_scale = to_float8(B)
dense_result = torch._scaled_mm(
A_fp8, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
A_fp8_sparse = to_sparse_semi_structured(A_fp8)
sparse_result = torch._scaled_mm(
A_fp8_sparse, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
```
Note that to keep this consistent with normal torch behavior, calling
`torch.mm(A_fp8_sparse, B_fp8)` will raise a NotImplementedError.
I also turned on cuSPARSELt by default and added CUSPARSELT_MAX_ID to the
backend to make the tests a bit cleaner
Test Plan:
```
python test/test_sparse_semi_structured -k scaled_mm
python test/test_sparse_semi_structured -k fp8
```
Reviewers:
Subscribers:
Tasks:
Tags:
[ghstack-poisoned]
…parsity"
Summary:
This PR adds `torch.float8e4m3fn` support to cuSPARSELt and `to_sparse_semi_structured`.
This will let users to run fp8 + 2:4 sparse matmuls on Hopper GPUs with
cusparselt >= 0.6.2, via to `scaled_mm` API.
```
A = rand_sparse_semi_structured_mask(256, 128, dtype=torch.float16)
B = torch.rand(dense_input_shape, device=device).to(torch.float16).t()
A_fp8, A_scale = to_float8(A)
B_fp8, B_scale = to_float8(B)
dense_result = torch._scaled_mm(
A_fp8, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
A_fp8_sparse = to_sparse_semi_structured(A_fp8)
sparse_result = torch._scaled_mm(
A_fp8_sparse, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
```
Note that to keep this consistent with normal torch behavior, calling
`torch.mm(A_fp8_sparse, B_fp8)` will raise a NotImplementedError.
I also turned on cuSPARSELt by default and added CUSPARSELT_MAX_ID to the
backend to make the tests a bit cleaner
Test Plan:
```
python test/test_sparse_semi_structured -k scaled_mm
python test/test_sparse_semi_structured -k fp8
```
Reviewers:
Subscribers:
Tasks:
Tags:
[ghstack-poisoned]
Summary:
This PR adds `torch.float8e4m3fn` support to cuSPARSELt and `to_sparse_semi_structured`.
This will let users to run fp8 + 2:4 sparse matmuls on Hopper GPUs with
cusparselt >= 0.6.2, via to `scaled_mm` API.
```
A = rand_sparse_semi_structured_mask(256, 128, dtype=torch.float16)
B = torch.rand(dense_input_shape, device=device).to(torch.float16).t()
A_fp8, A_scale = to_float8(A)
B_fp8, B_scale = to_float8(B)
dense_result = torch._scaled_mm(
A_fp8, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
A_fp8_sparse = to_sparse_semi_structured(A_fp8)
sparse_result = torch._scaled_mm(
A_fp8_sparse, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
```
Note that to keep this consistent with normal torch behavior, calling
`torch.mm(A_fp8_sparse, B_fp8)` will raise a NotImplementedError.
I also turned on cuSPARSELt by default and added CUSPARSELT_MAX_ID to the
backend to make the tests a bit cleaner
Test Plan:
```
python test/test_sparse_semi_structured -k scaled_mm
python test/test_sparse_semi_structured -k fp8
```
Reviewers:
Subscribers:
Tasks:
Tags:
ghstack-source-id: 1fe22a9
Pull Request resolved: #136397
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think this looks good, is there a reason why we cant also add support for float8_e5m2?
I am purely targeting inference which from what I understand is mostly float8e4m3. |
…parsity"
Summary:
This PR adds `torch.float8e4m3fn` support to cuSPARSELt and `to_sparse_semi_structured`.
This will let users to run fp8 + 2:4 sparse matmuls on Hopper GPUs with
cusparselt >= 0.6.2, via to `scaled_mm` API.
```
A = rand_sparse_semi_structured_mask(256, 128, dtype=torch.float16)
B = torch.rand(dense_input_shape, device=device).to(torch.float16).t()
A_fp8, A_scale = to_float8(A)
B_fp8, B_scale = to_float8(B)
dense_result = torch._scaled_mm(
A_fp8, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
A_fp8_sparse = to_sparse_semi_structured(A_fp8)
sparse_result = torch._scaled_mm(
A_fp8_sparse, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
```
Note that to keep this consistent with normal torch behavior, calling
`torch.mm(A_fp8_sparse, B_fp8)` will raise a NotImplementedError.
I also turned on cuSPARSELt by default and added CUSPARSELT_MAX_ID to the
backend to make the tests a bit cleaner
Test Plan:
```
python test/test_sparse_semi_structured -k scaled_mm
python test/test_sparse_semi_structured -k fp8
```
Reviewers:
Subscribers:
Tasks:
Tags:
[ghstack-poisoned]
…parsity"
Summary:
This PR adds `torch.float8e4m3fn` support to cuSPARSELt and `to_sparse_semi_structured`.
This will let users to run fp8 + 2:4 sparse matmuls on Hopper GPUs with
cusparselt >= 0.6.2, via to `scaled_mm` API.
```
A = rand_sparse_semi_structured_mask(256, 128, dtype=torch.float16)
B = torch.rand(dense_input_shape, device=device).to(torch.float16).t()
A_fp8, A_scale = to_float8(A)
B_fp8, B_scale = to_float8(B)
dense_result = torch._scaled_mm(
A_fp8, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
A_fp8_sparse = to_sparse_semi_structured(A_fp8)
sparse_result = torch._scaled_mm(
A_fp8_sparse, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
```
Note that to keep this consistent with normal torch behavior, calling
`torch.mm(A_fp8_sparse, B_fp8)` will raise a NotImplementedError.
I also turned on cuSPARSELt by default and added CUSPARSELT_MAX_ID to the
backend to make the tests a bit cleaner
Test Plan:
```
python test/test_sparse_semi_structured -k scaled_mm
python test/test_sparse_semi_structured -k fp8
```
Reviewers:
Subscribers:
Tasks:
Tags:
[ghstack-poisoned]
| tensor_alpha_mode = 1; | ||
| TORCH_CUDASPARSE_CHECK(cusparseLtMatmulDescSetAttribute( | ||
| &handle, &matmul, CUSPARSELT_MATMUL_ALPHA_VECTOR_SCALING, &tensor_alpha_mode, sizeof(tensor_alpha_mode))); | ||
| alpha_ptr = (float*)alpha_tensor.data_ptr(); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit: static_cast
|
|
||
| @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, "FP8 is only supported on H100+ and sm_89 and MI300+ devices") | ||
| @parametrize("out_dtype", [torch.float16, torch.bfloat16, torch.float32]) | ||
| @parametrize("dense_input_shape", [(256, 128)]) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Maybe add a fp8 out test as well, you will need to cast up before comparison of assert close
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do you have a reference test for this? allclose fails for me with this, and all the other float8 tests I saw just test these three.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I have this one:
pytorch/test/test_matmul_cuda.py
Line 481 in 0b62ebf
| def test_float8_bias(self, device) -> None: |
but using predefined inputs
…parsity"
Summary:
This PR adds `torch.float8e4m3fn` support to cuSPARSELt and `to_sparse_semi_structured`.
This will let users to run fp8 + 2:4 sparse matmuls on Hopper GPUs with
cusparselt >= 0.6.2, via to `scaled_mm` API.
```
A = rand_sparse_semi_structured_mask(256, 128, dtype=torch.float16)
B = torch.rand(dense_input_shape, device=device).to(torch.float16).t()
A_fp8, A_scale = to_float8(A)
B_fp8, B_scale = to_float8(B)
dense_result = torch._scaled_mm(
A_fp8, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
A_fp8_sparse = to_sparse_semi_structured(A_fp8)
sparse_result = torch._scaled_mm(
A_fp8_sparse, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
```
Note that to keep this consistent with normal torch behavior, calling
`torch.mm(A_fp8_sparse, B_fp8)` will raise a NotImplementedError.
I also turned on cuSPARSELt by default and added CUSPARSELT_MAX_ID to the
backend to make the tests a bit cleaner
Test Plan:
```
python test/test_sparse_semi_structured -k scaled_mm
python test/test_sparse_semi_structured -k fp8
```
Reviewers:
Subscribers:
Tasks:
Tags:
[ghstack-poisoned]
…parsity"
Summary:
This PR adds `torch.float8e4m3fn` support to cuSPARSELt and `to_sparse_semi_structured`.
This will let users to run fp8 + 2:4 sparse matmuls on Hopper GPUs with
cusparselt >= 0.6.2, via to `scaled_mm` API.
```
A = rand_sparse_semi_structured_mask(256, 128, dtype=torch.float16)
B = torch.rand(dense_input_shape, device=device).to(torch.float16).t()
A_fp8, A_scale = to_float8(A)
B_fp8, B_scale = to_float8(B)
dense_result = torch._scaled_mm(
A_fp8, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
A_fp8_sparse = to_sparse_semi_structured(A_fp8)
sparse_result = torch._scaled_mm(
A_fp8_sparse, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
```
Note that to keep this consistent with normal torch behavior, calling
`torch.mm(A_fp8_sparse, B_fp8)` will raise a NotImplementedError.
I also turned on cuSPARSELt by default and added CUSPARSELT_MAX_ID to the
backend to make the tests a bit cleaner
Test Plan:
```
python test/test_sparse_semi_structured -k scaled_mm
python test/test_sparse_semi_structured -k fp8
```
Reviewers:
Subscribers:
Tasks:
Tags:
[ghstack-poisoned]
Summary:
This PR adds `torch.float8e4m3fn` support to cuSPARSELt and `to_sparse_semi_structured`.
This will let users to run fp8 + 2:4 sparse matmuls on Hopper GPUs with
cusparselt >= 0.6.2, via to `scaled_mm` API.
```
A = rand_sparse_semi_structured_mask(256, 128, dtype=torch.float16)
B = torch.rand(dense_input_shape, device=device).to(torch.float16).t()
A_fp8, A_scale = to_float8(A)
B_fp8, B_scale = to_float8(B)
dense_result = torch._scaled_mm(
A_fp8, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
A_fp8_sparse = to_sparse_semi_structured(A_fp8)
sparse_result = torch._scaled_mm(
A_fp8_sparse, B_fp8,
scale_a=A_scale, scale_b=B_scale,
out_dtype=out_dtype
)
```
Note that to keep this consistent with normal torch behavior, calling
`torch.mm(A_fp8_sparse, B_fp8)` will raise a NotImplementedError.
I also turned on cuSPARSELt by default and added CUSPARSELT_MAX_ID to the
backend to make the tests a bit cleaner
Test Plan:
```
python test/test_sparse_semi_structured -k scaled_mm
python test/test_sparse_semi_structured -k fp8
```
Reviewers:
Subscribers:
Tasks:
Tags:
ghstack-source-id: dd32b63
Pull Request resolved: #136397
|
@pytorchbot merge |
Merge startedYour change will be merged once all checks pass (ETA 0-4 Hours). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
Merge failedReason: 1 mandatory check(s) failed. The first few are: Dig deeper by viewing the failures on hud |
|
@pytorchbot merge -f "unrelated failures" |
Merge startedYour change will be merged immediately since you used the force (-f) flag, bypassing any CI checks (ETA: 1-5 minutes). Please use Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
Stack from ghstack (oldest at bottom):
Summary:
This PR adds
torch.float8e4m3fnsupport to cuSPARSELt andto_sparse_semi_structured.This will let users to run fp8 + 2:4 sparse matmuls on Hopper GPUs with
cusparselt >= 0.6.2, via to
scaled_mmAPI.Note that to keep this consistent with normal torch behavior, calling
torch.mm(A_fp8_sparse, B_fp8)will raise a NotImplementedError.I also turned on cuSPARSELt by default and added CUSPARSELT_MAX_ID to the
backend to make the tests a bit cleaner
Test Plan:
Reviewers:
Subscribers:
Tasks:
Tags: