-
Notifications
You must be signed in to change notification settings - Fork 25.7k
[ROCm] Limit number of values per thread for reductions on three dimensions #159652
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/159652
Note: Links to docs will display an error until the docs builds have been completed. ✅ You can merge normally! (2 Unrelated Failures)As of commit 70792b5 with merge base 1465757 ( FLAKY - The following job failed but was likely due to flakiness present on trunk:
UNSTABLE - The following job is marked as unstable, possibly due to flakiness on trunk:
This comment was automatically generated by Dr. CI and updates every 15 minutes. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Question : Was the choice of 2048 as the threshold for "values per thread" purely heuristic? It would be helpful to add a comment or reference explaining why this value was chosen and whether it is empirically optimal.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Another question : Is there an upper bound for config.ctas_per_output *= 2;
|
Reproducer: |
|
To add the ciflow label This helps ensure we don't trigger CI on this PR until it is actually authorized to do so. Please ping one of the reviewers if you do not have access to approve and run workflows. |
It was indeed empirically determined. I'll add a comment. |
From the previous semantics there doesn't seem to be the case. |
9d82d7d to
70792b5
Compare
…nsions (#2460) In the current implementation of reductions in three dimensions for AMD GPUs the number of values per thread is unbounded and can end up being in the hundreds of thousands for certain tensors. This of course is bad for performance. This patch fixes this issue by increasing the parallelism and thus lowering the number of value per thread to reasonable limits i.e. less than 2048 values per thread. The performance gains can be between 10x-17x for certain examples where the number of values per thread was originally very high. cherry-pick of pytorch#159652
…nsions (#2460) In the current implementation of reductions in three dimensions for AMD GPUs the number of values per thread is unbounded and can end up being in the hundreds of thousands for certain tensors. This of course is bad for performance. This patch fixes this issue by increasing the parallelism and thus lowering the number of value per thread to reasonable limits i.e. less than 2048 values per thread. The performance gains can be between 10x-17x for certain examples where the number of values per thread was originally very high. cherry-pick of pytorch#159652
|
@pytorchbot merge |
|
To add the ciflow label This helps ensure we don't trigger CI on this PR until it is actually authorized to do so. Please ping one of the reviewers if you do not have access to approve and run workflows. |
Merge startedYour change will be merged once all checks pass (ETA 0-4 Hours). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
…nsions (#159652) In the current implementation of reductions in three dimensions for AMD GPUs the number of values per thread is unbounded and can end up being in the hundreds of thousands for certain tensors. This of course is bad for performance. This patch fixes this issue by increasing the parallelism and thus lowering the number of value per thread to reasonable limits i.e. less than 2048 values per thread. The performance gains can be between 10x-17x for certain examples where the number of values per thread was originally very high. Pull Request resolved: #159652 Approved by: https://github.com/jeffdaily
…nsions (pytorch#159652) In the current implementation of reductions in three dimensions for AMD GPUs the number of values per thread is unbounded and can end up being in the hundreds of thousands for certain tensors. This of course is bad for performance. This patch fixes this issue by increasing the parallelism and thus lowering the number of value per thread to reasonable limits i.e. less than 2048 values per thread. The performance gains can be between 10x-17x for certain examples where the number of values per thread was originally very high. Pull Request resolved: pytorch#159652 Approved by: https://github.com/jeffdaily
…nsions (#159652) In the current implementation of reductions in three dimensions for AMD GPUs the number of values per thread is unbounded and can end up being in the hundreds of thousands for certain tensors. This of course is bad for performance. This patch fixes this issue by increasing the parallelism and thus lowering the number of value per thread to reasonable limits i.e. less than 2048 values per thread. The performance gains can be between 10x-17x for certain examples where the number of values per thread was originally very high. Pull Request resolved: #159652 Approved by: https://github.com/jeffdaily
…nsions (pytorch#159652) In the current implementation of reductions in three dimensions for AMD GPUs the number of values per thread is unbounded and can end up being in the hundreds of thousands for certain tensors. This of course is bad for performance. This patch fixes this issue by increasing the parallelism and thus lowering the number of value per thread to reasonable limits i.e. less than 2048 values per thread. The performance gains can be between 10x-17x for certain examples where the number of values per thread was originally very high. Pull Request resolved: pytorch#159652 Approved by: https://github.com/jeffdaily
…nsions (pytorch#159652) In the current implementation of reductions in three dimensions for AMD GPUs the number of values per thread is unbounded and can end up being in the hundreds of thousands for certain tensors. This of course is bad for performance. This patch fixes this issue by increasing the parallelism and thus lowering the number of value per thread to reasonable limits i.e. less than 2048 values per thread. The performance gains can be between 10x-17x for certain examples where the number of values per thread was originally very high. Pull Request resolved: pytorch#159652 Approved by: https://github.com/jeffdaily
…nsions (pytorch#159652) In the current implementation of reductions in three dimensions for AMD GPUs the number of values per thread is unbounded and can end up being in the hundreds of thousands for certain tensors. This of course is bad for performance. This patch fixes this issue by increasing the parallelism and thus lowering the number of value per thread to reasonable limits i.e. less than 2048 values per thread. The performance gains can be between 10x-17x for certain examples where the number of values per thread was originally very high. Pull Request resolved: pytorch#159652 Approved by: https://github.com/jeffdaily
In the current implementation of reductions in three dimensions for AMD GPUs the number of values per thread is unbounded and can end up being in the hundreds of thousands for certain tensors. This of course is bad for performance. This patch fixes this issue by increasing the parallelism and thus lowering the number of value per thread to reasonable limits i.e. less than 2048 values per thread. The performance gains can be between 10x-17x for certain examples where the number of values per thread was originally very high.
cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd