KEMBAR78
[ONNX] Fix rotary_embedding_23 implementation by justinchuby · Pull Request #162865 · pytorch/pytorch · GitHub
Skip to content

Conversation

@justinchuby
Copy link
Collaborator

@justinchuby justinchuby commented Sep 13, 2025

The implementation of rotary_embedding_23 when input is 3D was incorrect.

Tested

Locally with

import onnx_ir as ir
import onnx
import torch
import os
import numpy as np

base_path = "/home/justinchu/dev/onnx/onnx/backend/test/data/node"
test_names = [
    "test_rotary_embedding",
    "test_rotary_embedding_3d_input",
    "test_rotary_embedding_interleaved",
    "test_rotary_embedding_no_position_ids",
    "test_rotary_embedding_no_position_ids_interleaved",
    "test_rotary_embedding_no_position_ids_rotary_dim",
    "test_rotary_embedding_with_interleaved_rotary_dim",
    "test_rotary_embedding_with_rotary_dim",
]
model_paths = [os.path.join(base_path, name) for name in test_names]


for path in model_paths:
    print(f"Checking {path} for issues...")

    model = onnx.load(os.path.join(path, "model.onnx"))
    input0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_0.pb"))
    ).numpy()
    input1 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_1.pb"))
    ).numpy()
    input2 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_2.pb"))
    ).numpy()
    if os.path.exists(os.path.join(path, "test_data_set_0", "input_3.pb")):
        input3 = ir.from_proto(
            onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_3.pb"))
        ).numpy()
    else:
        input3 = None
    output0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "output_0.pb"))
    ).numpy()

    m = ir.from_proto(model)

    node = m.graph[-1]
    print(node)
    assert node.op_type == "RotaryEmbedding"

    interleaved = node.attributes.get_int("interleaved", 0)
    num_heads = node.attributes.get_int("num_heads", 0)
    rotary_embedding_dim = node.attributes.get_int("rotary_embedding_dim", 0)

    torch_out = torch.onnx.ops.rotary_embedding(
        torch.tensor(input0),
        torch.tensor(input1),
        torch.tensor(input2),
        position_ids=torch.tensor(input3) if input3 is not None else None,
        interleaved=bool(interleaved),
        num_heads=num_heads,
        rotary_embedding_dim=rotary_embedding_dim,
    )
    torch_out = torch_out.detach().cpu().numpy()
    np.testing.assert_allclose(torch_out, output0)

Fix #162848

cc @titaiwangms @kunal-vaishnavi

Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
@pytorch-bot
Copy link

pytorch-bot bot commented Sep 13, 2025

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/162865

Note: Links to docs will display an error until the docs builds have been completed.

✅ No Failures

As of commit 3cc0463 with merge base a94ddd9 (image):
💚 Looks good so far! There are no failures yet. 💚

This comment was automatically generated by Dr. CI and updates every 15 minutes.

@pytorch-bot pytorch-bot bot added the release notes: onnx torch.onnx related changes that should show up in the release notes label Sep 13, 2025
@justinchuby justinchuby added module: onnx Related to torch.onnx topic: bug fixes topic category labels Sep 13, 2025
@justinchuby justinchuby added this to the 2.9.0 milestone Sep 13, 2025
@justinchuby justinchuby marked this pull request as draft September 13, 2025 00:50
@justinchuby justinchuby marked this pull request as ready for review September 13, 2025 00:50
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
@justinchuby
Copy link
Collaborator Author

@pytorchbot merge

@pytorch-bot pytorch-bot bot added the ciflow/trunk Trigger trunk jobs on your pull request label Sep 16, 2025
@pytorchmergebot
Copy link
Collaborator

Merge started

Your change will be merged once all checks pass (ETA 0-4 Hours).

Learn more about merging in the wiki.

Questions? Feedback? Please reach out to the PyTorch DevX Team

Advanced Debugging
Check the merge workflow status
here

Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
@justinchuby
Copy link
Collaborator Author

@pytorchbot merge

@pytorchmergebot
Copy link
Collaborator

The merge job was canceled or timed out. This most often happen if two merge requests were issued for the same PR, or if merge job was waiting for more than 6 hours for tests to finish. In later case, please do not hesitate to reissue the merge command
For more information see pytorch-bot wiki.

@pytorchmergebot
Copy link
Collaborator

Merge started

Your change will be merged once all checks pass (ETA 0-4 Hours).

Learn more about merging in the wiki.

Questions? Feedback? Please reach out to the PyTorch DevX Team

Advanced Debugging
Check the merge workflow status
here

@pytorchmergebot
Copy link
Collaborator

Merge failed

Reason: 1 mandatory check(s) failed. The first few are:

Dig deeper by viewing the failures on hud

Details for Dev Infra team Raised by workflow job

Failing merge rule: Core Maintainers

@justinchuby
Copy link
Collaborator Author

@pytorchbot merge -i

@pytorchmergebot
Copy link
Collaborator

Merge started

Your change will be merged while ignoring the following 0 checks:

Learn more about merging in the wiki.

Questions? Feedback? Please reach out to the PyTorch DevX Team

Advanced Debugging
Check the merge workflow status
here

@justinchuby
Copy link
Collaborator Author

@pytorchbot cherry-pick --onto release/2.9 --fixes "ONNX operator fix for the new dynamo export feature" -c critical

pytorchbot pushed a commit that referenced this pull request Sep 16, 2025
The implementation of rotary_embedding_23 when input is 3D was incorrect.

## Tested

Locally with

```py
import onnx_ir as ir
import onnx
import torch
import os
import numpy as np

base_path = "/home/justinchu/dev/onnx/onnx/backend/test/data/node"
test_names = [
    "test_rotary_embedding",
    "test_rotary_embedding_3d_input",
    "test_rotary_embedding_interleaved",
    "test_rotary_embedding_no_position_ids",
    "test_rotary_embedding_no_position_ids_interleaved",
    "test_rotary_embedding_no_position_ids_rotary_dim",
    "test_rotary_embedding_with_interleaved_rotary_dim",
    "test_rotary_embedding_with_rotary_dim",
]
model_paths = [os.path.join(base_path, name) for name in test_names]

for path in model_paths:
    print(f"Checking {path} for issues...")

    model = onnx.load(os.path.join(path, "model.onnx"))
    input0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_0.pb"))
    ).numpy()
    input1 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_1.pb"))
    ).numpy()
    input2 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_2.pb"))
    ).numpy()
    if os.path.exists(os.path.join(path, "test_data_set_0", "input_3.pb")):
        input3 = ir.from_proto(
            onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_3.pb"))
        ).numpy()
    else:
        input3 = None
    output0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "output_0.pb"))
    ).numpy()

    m = ir.from_proto(model)

    node = m.graph[-1]
    print(node)
    assert node.op_type == "RotaryEmbedding"

    interleaved = node.attributes.get_int("interleaved", 0)
    num_heads = node.attributes.get_int("num_heads", 0)
    rotary_embedding_dim = node.attributes.get_int("rotary_embedding_dim", 0)

    torch_out = torch.onnx.ops.rotary_embedding(
        torch.tensor(input0),
        torch.tensor(input1),
        torch.tensor(input2),
        position_ids=torch.tensor(input3) if input3 is not None else None,
        interleaved=bool(interleaved),
        num_heads=num_heads,
        rotary_embedding_dim=rotary_embedding_dim,
    )
    torch_out = torch_out.detach().cpu().numpy()
    np.testing.assert_allclose(torch_out, output0)
```

Fix #162848

Pull Request resolved: #162865
Approved by: https://github.com/kunal-vaishnavi, https://github.com/titaiwangms

(cherry picked from commit fdf68fa)
@pytorchbot
Copy link
Collaborator

Cherry picking #162865

The cherry pick PR is at #163041 and it is linked with issue ONNX operator fix for the new dynamo export feature. The following tracker issues are updated:

Details for Dev Infra team Raised by workflow job

Camyll pushed a commit that referenced this pull request Sep 17, 2025
[ONNX] Fix rotary_embedding_23 implementation (#162865)

The implementation of rotary_embedding_23 when input is 3D was incorrect.

## Tested

Locally with

```py
import onnx_ir as ir
import onnx
import torch
import os
import numpy as np

base_path = "/home/justinchu/dev/onnx/onnx/backend/test/data/node"
test_names = [
    "test_rotary_embedding",
    "test_rotary_embedding_3d_input",
    "test_rotary_embedding_interleaved",
    "test_rotary_embedding_no_position_ids",
    "test_rotary_embedding_no_position_ids_interleaved",
    "test_rotary_embedding_no_position_ids_rotary_dim",
    "test_rotary_embedding_with_interleaved_rotary_dim",
    "test_rotary_embedding_with_rotary_dim",
]
model_paths = [os.path.join(base_path, name) for name in test_names]

for path in model_paths:
    print(f"Checking {path} for issues...")

    model = onnx.load(os.path.join(path, "model.onnx"))
    input0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_0.pb"))
    ).numpy()
    input1 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_1.pb"))
    ).numpy()
    input2 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_2.pb"))
    ).numpy()
    if os.path.exists(os.path.join(path, "test_data_set_0", "input_3.pb")):
        input3 = ir.from_proto(
            onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_3.pb"))
        ).numpy()
    else:
        input3 = None
    output0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "output_0.pb"))
    ).numpy()

    m = ir.from_proto(model)

    node = m.graph[-1]
    print(node)
    assert node.op_type == "RotaryEmbedding"

    interleaved = node.attributes.get_int("interleaved", 0)
    num_heads = node.attributes.get_int("num_heads", 0)
    rotary_embedding_dim = node.attributes.get_int("rotary_embedding_dim", 0)

    torch_out = torch.onnx.ops.rotary_embedding(
        torch.tensor(input0),
        torch.tensor(input1),
        torch.tensor(input2),
        position_ids=torch.tensor(input3) if input3 is not None else None,
        interleaved=bool(interleaved),
        num_heads=num_heads,
        rotary_embedding_dim=rotary_embedding_dim,
    )
    torch_out = torch_out.detach().cpu().numpy()
    np.testing.assert_allclose(torch_out, output0)
```

Fix #162848

Pull Request resolved: #162865
Approved by: https://github.com/kunal-vaishnavi, https://github.com/titaiwangms

(cherry picked from commit fdf68fa)

Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
markc-614 pushed a commit to markc-614/pytorch that referenced this pull request Sep 17, 2025
The implementation of rotary_embedding_23 when input is 3D was incorrect.

## Tested

Locally with

```py
import onnx_ir as ir
import onnx
import torch
import os
import numpy as np

base_path = "/home/justinchu/dev/onnx/onnx/backend/test/data/node"
test_names = [
    "test_rotary_embedding",
    "test_rotary_embedding_3d_input",
    "test_rotary_embedding_interleaved",
    "test_rotary_embedding_no_position_ids",
    "test_rotary_embedding_no_position_ids_interleaved",
    "test_rotary_embedding_no_position_ids_rotary_dim",
    "test_rotary_embedding_with_interleaved_rotary_dim",
    "test_rotary_embedding_with_rotary_dim",
]
model_paths = [os.path.join(base_path, name) for name in test_names]

for path in model_paths:
    print(f"Checking {path} for issues...")

    model = onnx.load(os.path.join(path, "model.onnx"))
    input0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_0.pb"))
    ).numpy()
    input1 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_1.pb"))
    ).numpy()
    input2 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_2.pb"))
    ).numpy()
    if os.path.exists(os.path.join(path, "test_data_set_0", "input_3.pb")):
        input3 = ir.from_proto(
            onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_3.pb"))
        ).numpy()
    else:
        input3 = None
    output0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "output_0.pb"))
    ).numpy()

    m = ir.from_proto(model)

    node = m.graph[-1]
    print(node)
    assert node.op_type == "RotaryEmbedding"

    interleaved = node.attributes.get_int("interleaved", 0)
    num_heads = node.attributes.get_int("num_heads", 0)
    rotary_embedding_dim = node.attributes.get_int("rotary_embedding_dim", 0)

    torch_out = torch.onnx.ops.rotary_embedding(
        torch.tensor(input0),
        torch.tensor(input1),
        torch.tensor(input2),
        position_ids=torch.tensor(input3) if input3 is not None else None,
        interleaved=bool(interleaved),
        num_heads=num_heads,
        rotary_embedding_dim=rotary_embedding_dim,
    )
    torch_out = torch_out.detach().cpu().numpy()
    np.testing.assert_allclose(torch_out, output0)
```

Fix pytorch#162848

Pull Request resolved: pytorch#162865
Approved by: https://github.com/kunal-vaishnavi, https://github.com/titaiwangms
mansiag05 pushed a commit to mansiag05/pytorch that referenced this pull request Sep 22, 2025
The implementation of rotary_embedding_23 when input is 3D was incorrect.

## Tested

Locally with

```py
import onnx_ir as ir
import onnx
import torch
import os
import numpy as np

base_path = "/home/justinchu/dev/onnx/onnx/backend/test/data/node"
test_names = [
    "test_rotary_embedding",
    "test_rotary_embedding_3d_input",
    "test_rotary_embedding_interleaved",
    "test_rotary_embedding_no_position_ids",
    "test_rotary_embedding_no_position_ids_interleaved",
    "test_rotary_embedding_no_position_ids_rotary_dim",
    "test_rotary_embedding_with_interleaved_rotary_dim",
    "test_rotary_embedding_with_rotary_dim",
]
model_paths = [os.path.join(base_path, name) for name in test_names]

for path in model_paths:
    print(f"Checking {path} for issues...")

    model = onnx.load(os.path.join(path, "model.onnx"))
    input0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_0.pb"))
    ).numpy()
    input1 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_1.pb"))
    ).numpy()
    input2 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_2.pb"))
    ).numpy()
    if os.path.exists(os.path.join(path, "test_data_set_0", "input_3.pb")):
        input3 = ir.from_proto(
            onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_3.pb"))
        ).numpy()
    else:
        input3 = None
    output0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "output_0.pb"))
    ).numpy()

    m = ir.from_proto(model)

    node = m.graph[-1]
    print(node)
    assert node.op_type == "RotaryEmbedding"

    interleaved = node.attributes.get_int("interleaved", 0)
    num_heads = node.attributes.get_int("num_heads", 0)
    rotary_embedding_dim = node.attributes.get_int("rotary_embedding_dim", 0)

    torch_out = torch.onnx.ops.rotary_embedding(
        torch.tensor(input0),
        torch.tensor(input1),
        torch.tensor(input2),
        position_ids=torch.tensor(input3) if input3 is not None else None,
        interleaved=bool(interleaved),
        num_heads=num_heads,
        rotary_embedding_dim=rotary_embedding_dim,
    )
    torch_out = torch_out.detach().cpu().numpy()
    np.testing.assert_allclose(torch_out, output0)
```

Fix pytorch#162848

Pull Request resolved: pytorch#162865
Approved by: https://github.com/kunal-vaishnavi, https://github.com/titaiwangms
cleonard530 pushed a commit to cleonard530/pytorch that referenced this pull request Sep 22, 2025
The implementation of rotary_embedding_23 when input is 3D was incorrect.

## Tested

Locally with

```py
import onnx_ir as ir
import onnx
import torch
import os
import numpy as np

base_path = "/home/justinchu/dev/onnx/onnx/backend/test/data/node"
test_names = [
    "test_rotary_embedding",
    "test_rotary_embedding_3d_input",
    "test_rotary_embedding_interleaved",
    "test_rotary_embedding_no_position_ids",
    "test_rotary_embedding_no_position_ids_interleaved",
    "test_rotary_embedding_no_position_ids_rotary_dim",
    "test_rotary_embedding_with_interleaved_rotary_dim",
    "test_rotary_embedding_with_rotary_dim",
]
model_paths = [os.path.join(base_path, name) for name in test_names]

for path in model_paths:
    print(f"Checking {path} for issues...")

    model = onnx.load(os.path.join(path, "model.onnx"))
    input0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_0.pb"))
    ).numpy()
    input1 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_1.pb"))
    ).numpy()
    input2 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_2.pb"))
    ).numpy()
    if os.path.exists(os.path.join(path, "test_data_set_0", "input_3.pb")):
        input3 = ir.from_proto(
            onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_3.pb"))
        ).numpy()
    else:
        input3 = None
    output0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "output_0.pb"))
    ).numpy()

    m = ir.from_proto(model)

    node = m.graph[-1]
    print(node)
    assert node.op_type == "RotaryEmbedding"

    interleaved = node.attributes.get_int("interleaved", 0)
    num_heads = node.attributes.get_int("num_heads", 0)
    rotary_embedding_dim = node.attributes.get_int("rotary_embedding_dim", 0)

    torch_out = torch.onnx.ops.rotary_embedding(
        torch.tensor(input0),
        torch.tensor(input1),
        torch.tensor(input2),
        position_ids=torch.tensor(input3) if input3 is not None else None,
        interleaved=bool(interleaved),
        num_heads=num_heads,
        rotary_embedding_dim=rotary_embedding_dim,
    )
    torch_out = torch_out.detach().cpu().numpy()
    np.testing.assert_allclose(torch_out, output0)
```

Fix pytorch#162848

Pull Request resolved: pytorch#162865
Approved by: https://github.com/kunal-vaishnavi, https://github.com/titaiwangms
dsashidh pushed a commit to dsashidh/pytorch that referenced this pull request Sep 26, 2025
The implementation of rotary_embedding_23 when input is 3D was incorrect.

## Tested

Locally with

```py
import onnx_ir as ir
import onnx
import torch
import os
import numpy as np

base_path = "/home/justinchu/dev/onnx/onnx/backend/test/data/node"
test_names = [
    "test_rotary_embedding",
    "test_rotary_embedding_3d_input",
    "test_rotary_embedding_interleaved",
    "test_rotary_embedding_no_position_ids",
    "test_rotary_embedding_no_position_ids_interleaved",
    "test_rotary_embedding_no_position_ids_rotary_dim",
    "test_rotary_embedding_with_interleaved_rotary_dim",
    "test_rotary_embedding_with_rotary_dim",
]
model_paths = [os.path.join(base_path, name) for name in test_names]

for path in model_paths:
    print(f"Checking {path} for issues...")

    model = onnx.load(os.path.join(path, "model.onnx"))
    input0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_0.pb"))
    ).numpy()
    input1 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_1.pb"))
    ).numpy()
    input2 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_2.pb"))
    ).numpy()
    if os.path.exists(os.path.join(path, "test_data_set_0", "input_3.pb")):
        input3 = ir.from_proto(
            onnx.load_tensor(os.path.join(path, "test_data_set_0", "input_3.pb"))
        ).numpy()
    else:
        input3 = None
    output0 = ir.from_proto(
        onnx.load_tensor(os.path.join(path, "test_data_set_0", "output_0.pb"))
    ).numpy()

    m = ir.from_proto(model)

    node = m.graph[-1]
    print(node)
    assert node.op_type == "RotaryEmbedding"

    interleaved = node.attributes.get_int("interleaved", 0)
    num_heads = node.attributes.get_int("num_heads", 0)
    rotary_embedding_dim = node.attributes.get_int("rotary_embedding_dim", 0)

    torch_out = torch.onnx.ops.rotary_embedding(
        torch.tensor(input0),
        torch.tensor(input1),
        torch.tensor(input2),
        position_ids=torch.tensor(input3) if input3 is not None else None,
        interleaved=bool(interleaved),
        num_heads=num_heads,
        rotary_embedding_dim=rotary_embedding_dim,
    )
    torch_out = torch_out.detach().cpu().numpy()
    np.testing.assert_allclose(torch_out, output0)
```

Fix pytorch#162848

Pull Request resolved: pytorch#162865
Approved by: https://github.com/kunal-vaishnavi, https://github.com/titaiwangms
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

ciflow/trunk Trigger trunk jobs on your pull request Merged module: onnx Related to torch.onnx open source release notes: onnx torch.onnx related changes that should show up in the release notes topic: bug fixes topic category

Projects

None yet

Development

Successfully merging this pull request may close these issues.

[ONNX] Fix rotary embedding implementation

7 participants