This document discusses a study that uses the ke-REM (ke-Rule Extraction Method) classifier to predict promoter regions in DNA sequences. The study evaluates the performance of ke-REM compared to existing promoter prediction techniques. ke-REM constructs rules based on attribute-value pairs from a dataset of 106 E. coli DNA sequences, each containing 57 nucleotides. The results show that ke-REM competes well with existing methods for identifying promoter regions in DNA.