This document discusses association rule mining. Association rule mining finds frequent patterns, associations, correlations, or causal structures among items in transaction databases. The Apriori algorithm is commonly used to find frequent itemsets and generate association rules. It works by iteratively joining frequent itemsets from the previous pass to generate candidates, and then pruning the candidates that have infrequent subsets. Various techniques can improve the efficiency of Apriori, such as hashing to count itemsets and pruning transactions that don't contain frequent itemsets. Alternative approaches like FP-growth compress the database into a tree structure to avoid costly scans and candidate generation. The document also discusses mining multilevel, multidimensional, and quantitative association rules.