KEMBAR78
Building Robust ETL Pipelines with Apache Spark | PDF
Building Robust ETL
Pipelines with Apache Spark
Xiao Li
Spark Summit | SF | Jun 2017
2
TEAM
About Databricks
Started Spark project (now Apache Spark) at UC Berkeley in 2009
22
PRODUCT
Unified Analytics Platform
MISSION
Making Big Data Simple
3
About Me
• Apache Spark Committer
• Software Engineer at Databricks
• Ph.D. in University of Florida
• Previously, IBM Master Inventor, QRep, GDPS A/A and STC
• Spark SQL, Database Replication, Information Integration
• Github: gatorsmile
4
Overview
1. What’s an ETL Pipeline?
2. Using Spark SQL for ETL
- Extract: Dealing with Dirty Data (Bad Records or Files)
- Extract: Multi-line JSON/CSV Support
- Transformation: High-order functions in SQL
- Load: Unified write paths and interfaces
3. New Features in Spark 2.3
- Performance (Data Source API v2, Python UDF)
5
What is a Data Pipeline?
1. Sequence of transformations on data
2. Source data is typically semi-structured/unstructured
(JSON, CSV etc.) and structured (JDBC, Parquet, ORC, the
other Hive-serde tables)
3. Output data is integrated, structured and curated.
– Ready for further data processing, analysis and reporting
6
Example of a Data Pipeline
Aggregate Reporting
Applications
ML
Model
Ad-hoc Queries
Database
Cloud
Warehouse
Kafka, Log
Kafka, Log
7
ETL is the First Step in a Data Pipeline
1. ETL stands for EXTRACT, TRANSFORM and LOAD
2. Goal is to clean or curate the data
- Retrieve data from sources (EXTRACT)
- Transform data into a consumable format (TRANSFORM)
- Transmit data to downstream consumers (LOAD)
8
An ETL Query in Apache Spark
spark.read.json("/source/path")
.filter(...)
.agg(...)
.write.mode("append")
.parquet("/output/path")
EXTRACT
TRANSFORM
LOAD
9
An ETL Query in Apache Spark
Extract
EXTRACT
TRANSFORM
LOAD
val csvTable = spark.read.csv("/source/path")
val jdbcTable = spark.read.format("jdbc")
.option("url", "jdbc:postgresql:...")
.option("dbtable", "TEST.PEOPLE")
.load()
csvTable
.join(jdbcTable, Seq("name"), "outer")
.filter("id <= 2999")
.write
.mode("overwrite")
.format("parquet")
.saveAsTable("outputTableName")
10
What’s so hard about ETL
Queries?
11
Why is ETL Hard?
1. Too complex
2. Error-prone
3. Too slow
4. Too expensive
1. Various sources/formats
2. Schema mismatch
3. Different representation
4. Corrupted files and data
5. Scalability
6. Schema evolution
7. Continuous ETL
12
This is why ETL is important
Consumers of this data don’t want to deal with this
messiness and complexity
13
Using Spark SQL for ETL
14
Structured
Streaming
Spark SQL's flexible APIs,
support for a wide
variety of datasources,
build-in support for
structured streaming,
state of art catalyst
optimizer and tungsten
execution engine make it
a great framework for
building end-to-end ETL
pipelines.
15
Data Source Supports
1. Built-in connectors in Spark:
– JSON, CSV, Text, Hive, Parquet, ORC, JDBC
2. Third-party data source connectors:
– https://spark-packages.org
3. Define your own data source connectors by
Data Source APIs
– Ref link: https://youtu.be/uxuLRiNoDio
16
{"a":1, "b":2, "c":3}
{"e":2, "c":3, "b":5}
{"a":5, "d":7}
spark.read
.json("/source/path”)
.printSchema()
Schema Inference – semi-structured files
17
{"a":1, "b":2, "c":3.1}
{"e":2, "c":3, "b":5}
{"a":"5", "d":7}
spark.read
.json("/source/path”)
.printSchema()
Schema Inference – semi-structured files
18
{"a":1, "b":2, "c":3}
{"e":2, "c":3, "b":5}
{"a":5, "d":7}
val schema = new StructType()
.add("a", "int")
.add("b", "int")
spark.read
.json("/source/path")
.schema(schema)
.show()
User-specified Schema
19
{"a":1, "b":2, "c":3}
{"e":2, "c":3, "b":5}
{"a":5, "d":7}
Availability: Apache Spark 2.2
spark.read
.json("/source/path")
.schema("a INT, b INT")
.show()
User-specified DDL-format Schema
20
Corrupt
Files
java.io.IOException. For example, java.io.EOFException: Unexpected end of input
stream at org.apache.hadoop.io.compress.DecompressorStream.decompress
java.lang.RuntimeException: file:/temp/path/c000.json is not a Parquet file (too
small)
spark.sql.files.ignoreCorruptFiles = true
[SPARK-17850] If true, the Spark jobs will
continue to run even when it encounters
corrupt files. The contents that have
been read will still be returned.
Dealing with Bad Data: Skip Corrupt Files
21
Missing or
Corrupt
Records
[SPARK-12833][SPARK-
13764] TextFile formats
(JSON and CSV) support
3 different ParseModes
while reading data:
1. PERMISSIVE
2. DROPMALFORMED
3. FAILFAST
Dealing with Bad Data: Skip Corrupt Records
22
{"a":1, "b":2, "c":3}
{"a":{, b:3}
{"a":5, "b":6, "c":7}
spark.read
.option("mode", "PERMISSIVE")
.option("columnNameOfCorruptRecord", "_corrupt_record")
.json(corruptRecords)
.show() The default can be configured via
spark.sql.columnNameOfCorruptRecord
Json: Dealing with Corrupt Records
23
{"a":1, "b":2, "c":3}
{"a":{, b:3}
{"a":5, "b":6, "c":7}
spark.read
.option("mode", "DROPMALFORMED")
.json(corruptRecords)
.show()
Json: Dealing with Corrupt Records
24
{"a":1, "b":2, "c":3}
{"a":{, b:3}
{"a":5, "b":6, "c":7}
spark.read
.option("mode", "FAILFAST")
.json(corruptRecords)
.show()
org.apache.spark.sql.catalyst.json
.SparkSQLJsonProcessingException:
Malformed line in FAILFAST mode:
{"a":{, b:3}
Json: Dealing with Corrupt Records
25
spark.read
.option("mode", "FAILFAST")
.csv(corruptRecords)
.show()
java.lang.RuntimeException:
Malformed line in FAILFAST mode:
2015,Chevy,Volt
CSV: Dealing with Corrupt Records
year,make,model,comment,blank
"2012","Tesla","S","No comment",
1997,Ford,E350,"Go get one now they",
2015,Chevy,Volt
26
spark.read.
.option("mode", "PERMISSIVE")
.csv(corruptRecords)
.show()
CSV: Dealing with Corrupt Records
year,make,model,comment,blank
"2012","Tesla","S","No comment",
1997,Ford,E350,"Go get one now they",
2015,Chevy,Volt
27
year,make,model,comment,blank
"2012","Tesla","S","No comment",
1997,Ford,E350,"Go get one now they",
2015,Chevy,Volt
spark.read
.option("header", true)
.option("mode", "PERMISSIVE")
.csv(corruptRecords)
.show()
CSV: Dealing with Corrupt Records
28
val schema = "col1 INT, col2 STRING, col3 STRING, col4 STRING, " +
"col5 STRING, __corrupted_column_name STRING"
spark.read
.option("header", true)
.option("mode", "PERMISSIVE")
.csv(corruptRecords)
.show()
CSV: Dealing with Corrupt Records
29
year,make,model,comment,blank
"2012","Tesla","S","No comment",
1997,Ford,E350,"Go get one now they",
2015,Chevy,Volt
spark.read
.option("mode", ”DROPMALFORMED")
.csv(corruptRecords)
.show()
CSV: Dealing with Corrupt Records
30
Functionality: Better Corruption Handling
badRecordsPath: a user-specified path to store exception files for
recording the information about bad records/files.
- A unified interface for both corrupt records and files
- Enabling multi-phase data cleaning
- DROPMALFORMED + Exception files
- No need an extra column for corrupt records
- Recording the exception data, reasons and time.
Availability: Databricks Runtime 3.0
31
Functionality: Better JSON and CSV Support
[SPARK-18352] [SPARK-19610] Multi-line JSON and CSV Support
- Spark SQL currently reads JSON/CSV one line at a time
- Before 2.2, it requires custom ETL
spark.read
.option(”multiLine",true)
.json(path)
Availability: Apache Spark 2.2
spark.read
.option(”multiLine",true)
.json(path)
32
Transformation: Higher-order Function in SQL
Transformation on complex objects like arrays, maps and
structures inside of columns.
UDF ? Expensive data serialization
tbl_nested
|-- key: long (nullable = false)
|-- values: array (nullable = false)
| |-- element: long (containsNull = false)
33
Transformation: Higher order function in SQL
1) Check for element existence
SELECT EXISTS(values, e -> e > 30) AS v
FROM tbl_nested;
2) Transform an array
SELECT TRANSFORM(values, e -> e * e) AS v
FROM tbl_nested;
tbl_nested
|-- key: long (nullable = false)
|-- values: array (nullable = false)
| |-- element: long (containsNull = false)
Transformation on complex objects like arrays, maps and
structures inside of columns.
34
4) Aggregate an array
SELECT REDUCE(values, 0, (value, acc) -> value + acc) AS sum
FROM tbl_nested;
Ref Databricks Blog: http://dbricks.co/2rUKQ1A
More cool features available in DB Runtime 3.0: http://dbricks.co/2rhPM4c
Availability: Databricks Runtime 3.0
3) Filter an array
SELECT FILTER(values, e -> e > 30) AS v
FROM tbl_nested;
Transformation: Higher order function in SQL
tbl_nested
|-- key: long (nullable = false)
|-- values: array (nullable = false)
| |-- element: long (containsNull = false)
35
Users can create Hive-serde tables using
DataframeWriter APIs
Availability: Apache Spark 2.2
New Format in DataframeWriter API
df.write.format("parquet")
.saveAsTable("tab")
df.write.format("hive")
.option("fileFormat", "avro")
.saveAsTable("tab")
CREATE Hive-serde tables CREATE data source tables
36
Availability: Apache Spark 2.2
Unified CREATE TABLE [AS SELECT]
CREATE TABLE t1(a INT, b INT)
USING ORC
CREATE TABLE t1(a INT, b INT)
USING hive
OPTIONS(fileFormat 'ORC')
CREATE Hive-serde tables CREATE data source tables
CREATE TABLE t1(a INT, b INT)
STORED AS ORC
37
CREATE [TEMPORARY] TABLE [IF NOT EXISTS]
[db_name.]table_name
USING table_provider
[OPTIONS table_property_list]
[PARTITIONED BY (col_name, col_name, ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)]
INTO num_buckets BUCKETS]
[LOCATION path]
[COMMENT table_comment]
[AS select_statement];
Availability: Apache Spark 2.2
Unified CREATE TABLE [AS SELECT]
Apache Spark preferred syntax
38
Apache Spark 2.3+
Massive focus on building ETL-friendly pipelines
39
[SPARK-15689] Data Source API v2
1. [SPARK-20960] An efficient column batch interface for data
exchanges between Spark and external systems.
o Cost for conversion to and from RDD[Row]
o Cost for serialization/deserialization
o Publish the columnar binary formats
2. Filter pushdown and column pruning
3. Additional pushdown: limit, sampling and so on.
Target: Apache Spark 2.3
40
Performance: Python UDFs
1. Python is the most popular language for ETL
2. Python UDFs are often used to express elaborate data
conversions/transformations
3. Any improvements to python UDF processing will ultimately
improve ETL.
4. Improve data exchange between Python and JVM
5. Block-level UDFs
o Block-level arguments and return types
Target: Apache Spark 2.3
41
Recap
1. What’s an ETL Pipeline?
2. Using Spark SQL for ETL
- Extract: Dealing with Dirty Data (Bad Records or Files)
- Extract: Multi-line JSON/CSV Support
- Transformation: High-order functions in SQL
- Load: Unified write paths and interfaces
3. New Features in Spark 2.3
- Performance (Data Source API v2, Python UDF)
42
UNIFIED ANALYTICS PLATFORM
Try Apache Spark in Databricks!
• Collaborative cloud environment
• Free version (community edition)
4242
DATABRICKS RUNTIME 3.0
• Apache Spark - optimized for the cloud
• Caching and optimization layer - DBIO
• Enterprise security - DBES
Try for free today.
databricks.com
Questions?
Xiao Li (lixiao@databricks.com)

Building Robust ETL Pipelines with Apache Spark

  • 1.
    Building Robust ETL Pipelineswith Apache Spark Xiao Li Spark Summit | SF | Jun 2017
  • 2.
    2 TEAM About Databricks Started Sparkproject (now Apache Spark) at UC Berkeley in 2009 22 PRODUCT Unified Analytics Platform MISSION Making Big Data Simple
  • 3.
    3 About Me • ApacheSpark Committer • Software Engineer at Databricks • Ph.D. in University of Florida • Previously, IBM Master Inventor, QRep, GDPS A/A and STC • Spark SQL, Database Replication, Information Integration • Github: gatorsmile
  • 4.
    4 Overview 1. What’s anETL Pipeline? 2. Using Spark SQL for ETL - Extract: Dealing with Dirty Data (Bad Records or Files) - Extract: Multi-line JSON/CSV Support - Transformation: High-order functions in SQL - Load: Unified write paths and interfaces 3. New Features in Spark 2.3 - Performance (Data Source API v2, Python UDF)
  • 5.
    5 What is aData Pipeline? 1. Sequence of transformations on data 2. Source data is typically semi-structured/unstructured (JSON, CSV etc.) and structured (JDBC, Parquet, ORC, the other Hive-serde tables) 3. Output data is integrated, structured and curated. – Ready for further data processing, analysis and reporting
  • 6.
    6 Example of aData Pipeline Aggregate Reporting Applications ML Model Ad-hoc Queries Database Cloud Warehouse Kafka, Log Kafka, Log
  • 7.
    7 ETL is theFirst Step in a Data Pipeline 1. ETL stands for EXTRACT, TRANSFORM and LOAD 2. Goal is to clean or curate the data - Retrieve data from sources (EXTRACT) - Transform data into a consumable format (TRANSFORM) - Transmit data to downstream consumers (LOAD)
  • 8.
    8 An ETL Queryin Apache Spark spark.read.json("/source/path") .filter(...) .agg(...) .write.mode("append") .parquet("/output/path") EXTRACT TRANSFORM LOAD
  • 9.
    9 An ETL Queryin Apache Spark Extract EXTRACT TRANSFORM LOAD val csvTable = spark.read.csv("/source/path") val jdbcTable = spark.read.format("jdbc") .option("url", "jdbc:postgresql:...") .option("dbtable", "TEST.PEOPLE") .load() csvTable .join(jdbcTable, Seq("name"), "outer") .filter("id <= 2999") .write .mode("overwrite") .format("parquet") .saveAsTable("outputTableName")
  • 10.
    10 What’s so hardabout ETL Queries?
  • 11.
    11 Why is ETLHard? 1. Too complex 2. Error-prone 3. Too slow 4. Too expensive 1. Various sources/formats 2. Schema mismatch 3. Different representation 4. Corrupted files and data 5. Scalability 6. Schema evolution 7. Continuous ETL
  • 12.
    12 This is whyETL is important Consumers of this data don’t want to deal with this messiness and complexity
  • 13.
  • 14.
    14 Structured Streaming Spark SQL's flexibleAPIs, support for a wide variety of datasources, build-in support for structured streaming, state of art catalyst optimizer and tungsten execution engine make it a great framework for building end-to-end ETL pipelines.
  • 15.
    15 Data Source Supports 1.Built-in connectors in Spark: – JSON, CSV, Text, Hive, Parquet, ORC, JDBC 2. Third-party data source connectors: – https://spark-packages.org 3. Define your own data source connectors by Data Source APIs – Ref link: https://youtu.be/uxuLRiNoDio
  • 16.
    16 {"a":1, "b":2, "c":3} {"e":2,"c":3, "b":5} {"a":5, "d":7} spark.read .json("/source/path”) .printSchema() Schema Inference – semi-structured files
  • 17.
    17 {"a":1, "b":2, "c":3.1} {"e":2,"c":3, "b":5} {"a":"5", "d":7} spark.read .json("/source/path”) .printSchema() Schema Inference – semi-structured files
  • 18.
    18 {"a":1, "b":2, "c":3} {"e":2,"c":3, "b":5} {"a":5, "d":7} val schema = new StructType() .add("a", "int") .add("b", "int") spark.read .json("/source/path") .schema(schema) .show() User-specified Schema
  • 19.
    19 {"a":1, "b":2, "c":3} {"e":2,"c":3, "b":5} {"a":5, "d":7} Availability: Apache Spark 2.2 spark.read .json("/source/path") .schema("a INT, b INT") .show() User-specified DDL-format Schema
  • 20.
    20 Corrupt Files java.io.IOException. For example,java.io.EOFException: Unexpected end of input stream at org.apache.hadoop.io.compress.DecompressorStream.decompress java.lang.RuntimeException: file:/temp/path/c000.json is not a Parquet file (too small) spark.sql.files.ignoreCorruptFiles = true [SPARK-17850] If true, the Spark jobs will continue to run even when it encounters corrupt files. The contents that have been read will still be returned. Dealing with Bad Data: Skip Corrupt Files
  • 21.
    21 Missing or Corrupt Records [SPARK-12833][SPARK- 13764] TextFileformats (JSON and CSV) support 3 different ParseModes while reading data: 1. PERMISSIVE 2. DROPMALFORMED 3. FAILFAST Dealing with Bad Data: Skip Corrupt Records
  • 22.
    22 {"a":1, "b":2, "c":3} {"a":{,b:3} {"a":5, "b":6, "c":7} spark.read .option("mode", "PERMISSIVE") .option("columnNameOfCorruptRecord", "_corrupt_record") .json(corruptRecords) .show() The default can be configured via spark.sql.columnNameOfCorruptRecord Json: Dealing with Corrupt Records
  • 23.
    23 {"a":1, "b":2, "c":3} {"a":{,b:3} {"a":5, "b":6, "c":7} spark.read .option("mode", "DROPMALFORMED") .json(corruptRecords) .show() Json: Dealing with Corrupt Records
  • 24.
    24 {"a":1, "b":2, "c":3} {"a":{,b:3} {"a":5, "b":6, "c":7} spark.read .option("mode", "FAILFAST") .json(corruptRecords) .show() org.apache.spark.sql.catalyst.json .SparkSQLJsonProcessingException: Malformed line in FAILFAST mode: {"a":{, b:3} Json: Dealing with Corrupt Records
  • 25.
    25 spark.read .option("mode", "FAILFAST") .csv(corruptRecords) .show() java.lang.RuntimeException: Malformed linein FAILFAST mode: 2015,Chevy,Volt CSV: Dealing with Corrupt Records year,make,model,comment,blank "2012","Tesla","S","No comment", 1997,Ford,E350,"Go get one now they", 2015,Chevy,Volt
  • 26.
    26 spark.read. .option("mode", "PERMISSIVE") .csv(corruptRecords) .show() CSV: Dealingwith Corrupt Records year,make,model,comment,blank "2012","Tesla","S","No comment", 1997,Ford,E350,"Go get one now they", 2015,Chevy,Volt
  • 27.
    27 year,make,model,comment,blank "2012","Tesla","S","No comment", 1997,Ford,E350,"Go getone now they", 2015,Chevy,Volt spark.read .option("header", true) .option("mode", "PERMISSIVE") .csv(corruptRecords) .show() CSV: Dealing with Corrupt Records
  • 28.
    28 val schema ="col1 INT, col2 STRING, col3 STRING, col4 STRING, " + "col5 STRING, __corrupted_column_name STRING" spark.read .option("header", true) .option("mode", "PERMISSIVE") .csv(corruptRecords) .show() CSV: Dealing with Corrupt Records
  • 29.
    29 year,make,model,comment,blank "2012","Tesla","S","No comment", 1997,Ford,E350,"Go getone now they", 2015,Chevy,Volt spark.read .option("mode", ”DROPMALFORMED") .csv(corruptRecords) .show() CSV: Dealing with Corrupt Records
  • 30.
    30 Functionality: Better CorruptionHandling badRecordsPath: a user-specified path to store exception files for recording the information about bad records/files. - A unified interface for both corrupt records and files - Enabling multi-phase data cleaning - DROPMALFORMED + Exception files - No need an extra column for corrupt records - Recording the exception data, reasons and time. Availability: Databricks Runtime 3.0
  • 31.
    31 Functionality: Better JSONand CSV Support [SPARK-18352] [SPARK-19610] Multi-line JSON and CSV Support - Spark SQL currently reads JSON/CSV one line at a time - Before 2.2, it requires custom ETL spark.read .option(”multiLine",true) .json(path) Availability: Apache Spark 2.2 spark.read .option(”multiLine",true) .json(path)
  • 32.
    32 Transformation: Higher-order Functionin SQL Transformation on complex objects like arrays, maps and structures inside of columns. UDF ? Expensive data serialization tbl_nested |-- key: long (nullable = false) |-- values: array (nullable = false) | |-- element: long (containsNull = false)
  • 33.
    33 Transformation: Higher orderfunction in SQL 1) Check for element existence SELECT EXISTS(values, e -> e > 30) AS v FROM tbl_nested; 2) Transform an array SELECT TRANSFORM(values, e -> e * e) AS v FROM tbl_nested; tbl_nested |-- key: long (nullable = false) |-- values: array (nullable = false) | |-- element: long (containsNull = false) Transformation on complex objects like arrays, maps and structures inside of columns.
  • 34.
    34 4) Aggregate anarray SELECT REDUCE(values, 0, (value, acc) -> value + acc) AS sum FROM tbl_nested; Ref Databricks Blog: http://dbricks.co/2rUKQ1A More cool features available in DB Runtime 3.0: http://dbricks.co/2rhPM4c Availability: Databricks Runtime 3.0 3) Filter an array SELECT FILTER(values, e -> e > 30) AS v FROM tbl_nested; Transformation: Higher order function in SQL tbl_nested |-- key: long (nullable = false) |-- values: array (nullable = false) | |-- element: long (containsNull = false)
  • 35.
    35 Users can createHive-serde tables using DataframeWriter APIs Availability: Apache Spark 2.2 New Format in DataframeWriter API df.write.format("parquet") .saveAsTable("tab") df.write.format("hive") .option("fileFormat", "avro") .saveAsTable("tab") CREATE Hive-serde tables CREATE data source tables
  • 36.
    36 Availability: Apache Spark2.2 Unified CREATE TABLE [AS SELECT] CREATE TABLE t1(a INT, b INT) USING ORC CREATE TABLE t1(a INT, b INT) USING hive OPTIONS(fileFormat 'ORC') CREATE Hive-serde tables CREATE data source tables CREATE TABLE t1(a INT, b INT) STORED AS ORC
  • 37.
    37 CREATE [TEMPORARY] TABLE[IF NOT EXISTS] [db_name.]table_name USING table_provider [OPTIONS table_property_list] [PARTITIONED BY (col_name, col_name, ...)] [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] [LOCATION path] [COMMENT table_comment] [AS select_statement]; Availability: Apache Spark 2.2 Unified CREATE TABLE [AS SELECT] Apache Spark preferred syntax
  • 38.
    38 Apache Spark 2.3+ Massivefocus on building ETL-friendly pipelines
  • 39.
    39 [SPARK-15689] Data SourceAPI v2 1. [SPARK-20960] An efficient column batch interface for data exchanges between Spark and external systems. o Cost for conversion to and from RDD[Row] o Cost for serialization/deserialization o Publish the columnar binary formats 2. Filter pushdown and column pruning 3. Additional pushdown: limit, sampling and so on. Target: Apache Spark 2.3
  • 40.
    40 Performance: Python UDFs 1.Python is the most popular language for ETL 2. Python UDFs are often used to express elaborate data conversions/transformations 3. Any improvements to python UDF processing will ultimately improve ETL. 4. Improve data exchange between Python and JVM 5. Block-level UDFs o Block-level arguments and return types Target: Apache Spark 2.3
  • 41.
    41 Recap 1. What’s anETL Pipeline? 2. Using Spark SQL for ETL - Extract: Dealing with Dirty Data (Bad Records or Files) - Extract: Multi-line JSON/CSV Support - Transformation: High-order functions in SQL - Load: Unified write paths and interfaces 3. New Features in Spark 2.3 - Performance (Data Source API v2, Python UDF)
  • 42.
    42 UNIFIED ANALYTICS PLATFORM TryApache Spark in Databricks! • Collaborative cloud environment • Free version (community edition) 4242 DATABRICKS RUNTIME 3.0 • Apache Spark - optimized for the cloud • Caching and optimization layer - DBIO • Enterprise security - DBES Try for free today. databricks.com
  • 43.