KEMBAR78
Introduction to trader bots with Python | PDF
Introduction to trader bots
with Python
Thomas Aglassinger
http://roskakori.at
@Taglassinger
https://github.com/roskakori/talks/tree/master/pygraz/traderbot
Overview
● Outline a simple trading bot
● Example usages for several Python modules
(most part of the standard library)
● (Probably) Python beginner friendly
Agenda
● Communication and configuration
● Trading
● Data analysis and debugging
● Testing
Limitations
● You won't get rich (but it's fun nevertheless)
● Code does not work anymore due API update
● Masterexchange is going to shut down soon
● Terms of service
Communication and Configuration
Overview
● Uses https://masterxchange.com/api.php
(defunct after 2015-11-15)
● Communicate using HTTPS and JSON
● Public queries available to anyone (e.g. current
bids)
● Private queries requiring a personal token
bound to you account (e.g. orders)
Query trades
● Query the last 500 trades for maidsafe coins:
https://masterxchange.com/api/v2/trades.php?currency=maid
● Result:
[{"tradeid":"31242","price":"0.00990000","amount":"0.151
10800","date":"1446399439","market":"msc_btc"},
{"tradeid":"31241","price":"0.00990000","amount":"0.099
89200","date":"1446319270","market":"msc_btc"},
{"tradeid":"31240","price":"0.00562223","amount":"0.037
79028","date":"1446309947","market":"msc_btc"}, ...]
Print the top 3 trades
import json
import requests
def _without_utf8_bom(text):
return text[3:] if text.startswith('xefxbbxbf') else text
query = requests.get(
'https://masterxchange.com/api/v2/trades.php',
headers={'User-Agent': 'demobot/0.1'},
params={'currency': 'maid'}
)
print('query.status_code =', query.status_code)
if query.status_code < 300:
query_text = _without_utf8_bom(query.text)
print('query_text = %r...' % query_text[:40])
trades = json.loads(query_text)
print('trades =', trades[:3])
Print the top 3 trades - result
query.status_code = 200
query_text = '[{"tradeid":"31246","price":"0.00002603"'...
trades = [{'market': 'maid_btc', 'date': '1446500342', 'amount':
'7000.00000000', 'price': '0.00002603', 'tradeid': '31246'}, {'market':
'maid_btc', 'date': '1446489311', 'amount': '22000.00000000',
'price': '0.00002655', 'tradeid': '31244'}, {'market': 'maid_btc', 'date':
'1446462486', 'amount': '1250.00000000', 'price': '0.00002655',
'tradeid': '31243'}]
Configuring the API key
● Private queries require an API key.
● Simple way to manage: configparser
● Store key in a config file
● Read it during startup
Example config file
[demobot]
api_key = ou1IurT4HQrFfN1ch...
Read the API key from the config
import configparser
config = configparser.ConfigParser()
config.read('demobot.cfg')
api_key = config.get('demobot', 'api_key')
Query your balances
https://masterxchange.com/api/v2/private/balance
s.php?APIkey=ou1IurT4H...
{"balances":{"total":
{"btc":"9.16311816","msc":"34.63724456","maid":"
43233.50000000"},"available":
{"btc":7.16311816,"msc":26.63724456,"maid":426
33.5}},"error_message":"","error_code":0}
Print your balances
query = requests.get(
'https://masterxchange.com/api/v2/private/balances.php' ,
headers={'User-Agent': 'demobot/0.1'},
params={'APIkey': api_key}
)
print('query.status_code =', query.status_code)
if query.status_code < 300:
query_text = _without_utf8_bom(query.text)
print('query_text = %r...' % query_text[:40])
balances_result = json.loads(query_text)
if balances_result['error_code'] == 0:
balances = balances_result['balances']
print('balances =', balances)
Print your balances - result
query.status_code = 200
query_text = '{"balances":{"total":
{"btc":0,"msc":0,"m'...
balances = {'total': {'xcpjenga': 0, 'colzoidy': 0,
'coltdu': 0, 'xcpopcu': 0, 'colgauto': 0, ...}}
Masterexchange error handling
1.Http status < 300?
2.Query result error_code = 0?
3.Process actual data in query result
Wrap error handling in Exceptions
class BotError(Exception):
pass
class HttpsConnection(object):
...
def query(self, function_name, payload=None, use_api_key=True):
function_url = 'https://masterxchange.com/api/v2/%s.php' % function_name
actual_payload = {} if payload is None else dict(payload)
if use_api_key:
actual_payload['APIkey'] = self._api_key
headers = {'User-Agent': 'demobot/0.1'}
r = requests.get(function_url, headers=headers, params=actual_payload)
if r.status_code >= 300:
raise BotError(
'cannot query %s with %s: HTTP error code=%d'
% (function_url, actual_payload, r.status_code))
result = json.loads(
r.text[3:] if r.text.startswith('xefxbbxbf') else r.text)
if use_api_key and (result['error_code'] != 0):
raise BotError(
'cannot query %s with %s: %s'
% (function_url, actual_payload, result['error_message']))
return result
Trading
Processing monetary values
● Use decimal instead of float
http://floating-point-gui.de/
● Python has a decimal module:
https://docs.python.org/3/library/decimal.html
● json and configparser only support float
→ convert after reading and before writing
● Bitcoin uses 8 digits after decimal separator
Use formatting for decimals
>>> from decimal import Decimal
>>> print(Decimal('0.00000001'))
1E-8
>>> print('%.8f' % Decimal('0.00000001'))
0.00000001
Modes of operation
● Advise: only suggest to sell or buy → user has to manually initiate
transactions
● Lower risk for “stupid” transactions
● Might miss opportunities due slow reaction time
● Helpful when trying out a hopefully improved trading algorithm
● Action: automatically sell and buy on market conditions deemed
favorable
● Can react quickly to changes
● Possibility for epic fail on buggy trading algorithms
● Recommendation: reduce risk (but also opportunities) by limiting
amount traded per transaction and hour, stop loss limits etc.
Basic bot loop
1.Update own balances
2.Update open orders on the market
3.Apply trading algorithm and decide next action
4.Possibly buy or sell
5.Wait some time
6.Repeat
Trading algorithms
On the long run, nothing really works
Some simple trading algorithms
● Spread between 2 different but interchangeable items;
e.g. Team Fortress 2's keys and earbuds:
http://icrontic.com/article/tf2-black-market-explained
● Delayed correlation between two items; e.g. stocks for
Coca Cola and Pepsi:
http://www.investopedia.com/university/guide-pairs-trading/pairs-trading-correlation.asp
● Wait for slips from sellers, buy “unusually” cheap items
and resell for “normal” price;
article about such a bot (violating terms of service):
http://diablo3story.blogspot.com.au/2014/07/a-diablo-3-story.html
Data analysis and Debugging
Tracking statistics
● Collect statistics in database
● To debug bot decisions
● To improve trading algorithm
● To monitor market conditions
Sqlite
● Robust and stable
● Efficient for single client use
● Easy to set up
● Included with Python:
https://docs.python.org/3/library/sqlite3.html
● Rather creative type system
● “Real” instead of “decimal”
● “int” for timestamp instead of “datetime” type
● Type anarchy concerning comparison
● http://www.sqlite.org/datatype3.html
Create a statistics database
def _create_database(self, database_path):
_log.info('connect to database %r', database_path)
result = sqlite3.connect(database_path)
with closing(result.cursor()) as cursor:
cursor.execute("""
create table if not exists balances (
action char(4) not null,
balance_time int not null,
btc real not null,
maid real not null,
price_per_maid real not null,
transferred int not null
)
""")
cursor.execute("""
create index if not exists
idx_balance_time on balances (balance_time)
""")
result.commit()
return result
Insert a statistics row
values_to_insert = (
action,
int(time.time()),
float(self.btc_balance),
float(self.maid_balance),
float(price_per_maid),
int(maid_transferred),
)
with closing(self._database.cursor()) as cursor:
cursor.execute("""
insert into balances (
action, balance_time, btc, maid, price_per_maid, transferred
)
values (?, ?, ?, ?, ?, ?)
""", values_to_insert)
self._database.commit()
Logging
● More detailed tracking of trading decisions than
database
● But no easy structured analysis
● Use logging Module
https://docs.python.org/3/library/logging.html
● Use RotatingFileHandler
https://docs.python.org/3/library/logging.handler
s.html#rotatingfilehandler
Example logging configuration 1/2
# Logging configuration as described in
# <https://docs.python.org/3/howto/logging-cookbook.html>.
[loggers]
keys=root,demobot
[handlers]
keys=console,file
[formatters]
keys=default
[logger_root]
level=DEBUG
handlers=console,file
[logger_demobot]
level=DEBUG
handlers=console,file
qualname=demobot
propagate=0
Example logging configuration 2/2
[handler_console]
class=StreamHandler
level=INFO
formatter=default
args=(sys.stderr,)
[handler_file]
class=RotatingFileHandler
level=DEBUG
formatter=default
args=('/tmp/demobot.log', mode='a', maxBytes=1000000, backupCount=5, encoding='utf-8')
[formatter_default]
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
datefmt=
Testing
Testing challenges
● Network communication is slow
● Many sites have limits on transactions per
second
● Testing actual orders requires money
Mock-up connections with scenarios
● Scenarios are simple text file containing
expected queries and JSON results
● The test case makes a decisions that results in
a query, parses the scenarios JSON result, and
makes the next decision and query
● Scenarios can be maintained by domain
experts
Example scenario file
# got maid, no open orders
# the bot should create a maid-order for 500maid and 0.10000001btc/maid
private/balances
{
"balances": {
"total":{"btc":0.9,"maid":500},
"available" {"btc":0,"maid":0}
},
"error_message":"", "error_code":0
}
private/openedOrders
{
"open_orders": [],
"error_message":"", "error_code":0
}
orderbook
[
{"market":"maid_btc","type":"sell","amount":"120.00000000","price":"0.20000000","date_created":"1401077847"},
{"market":"maid_btc","type":"buy","amount":"270.00000000","price":"0.10000000","date_created":"1418566454"}
]
private/createOrder
Scenario implementation
● Bot constructor gets a connection
● Class HttpConnection → query() returns JSON
from Masterexchange
● Class ScenarioConnection → query() checks
that function matches next line in scenario file
and if so returns next JSON from it
Audience feedback: try Gherkin!
https://pypi.python.org/pypi/gherkin3
Summary
Summary
● Python has many useful libraries to quickly
implement simple trading bots.
● You probably won't get rich.
● It's fun!

Introduction to trader bots with Python

  • 1.
    Introduction to traderbots with Python Thomas Aglassinger http://roskakori.at @Taglassinger https://github.com/roskakori/talks/tree/master/pygraz/traderbot
  • 2.
    Overview ● Outline asimple trading bot ● Example usages for several Python modules (most part of the standard library) ● (Probably) Python beginner friendly
  • 3.
    Agenda ● Communication andconfiguration ● Trading ● Data analysis and debugging ● Testing
  • 4.
    Limitations ● You won'tget rich (but it's fun nevertheless) ● Code does not work anymore due API update ● Masterexchange is going to shut down soon ● Terms of service
  • 5.
  • 6.
    Overview ● Uses https://masterxchange.com/api.php (defunctafter 2015-11-15) ● Communicate using HTTPS and JSON ● Public queries available to anyone (e.g. current bids) ● Private queries requiring a personal token bound to you account (e.g. orders)
  • 7.
    Query trades ● Querythe last 500 trades for maidsafe coins: https://masterxchange.com/api/v2/trades.php?currency=maid ● Result: [{"tradeid":"31242","price":"0.00990000","amount":"0.151 10800","date":"1446399439","market":"msc_btc"}, {"tradeid":"31241","price":"0.00990000","amount":"0.099 89200","date":"1446319270","market":"msc_btc"}, {"tradeid":"31240","price":"0.00562223","amount":"0.037 79028","date":"1446309947","market":"msc_btc"}, ...]
  • 8.
    Print the top3 trades import json import requests def _without_utf8_bom(text): return text[3:] if text.startswith('xefxbbxbf') else text query = requests.get( 'https://masterxchange.com/api/v2/trades.php', headers={'User-Agent': 'demobot/0.1'}, params={'currency': 'maid'} ) print('query.status_code =', query.status_code) if query.status_code < 300: query_text = _without_utf8_bom(query.text) print('query_text = %r...' % query_text[:40]) trades = json.loads(query_text) print('trades =', trades[:3])
  • 9.
    Print the top3 trades - result query.status_code = 200 query_text = '[{"tradeid":"31246","price":"0.00002603"'... trades = [{'market': 'maid_btc', 'date': '1446500342', 'amount': '7000.00000000', 'price': '0.00002603', 'tradeid': '31246'}, {'market': 'maid_btc', 'date': '1446489311', 'amount': '22000.00000000', 'price': '0.00002655', 'tradeid': '31244'}, {'market': 'maid_btc', 'date': '1446462486', 'amount': '1250.00000000', 'price': '0.00002655', 'tradeid': '31243'}]
  • 10.
    Configuring the APIkey ● Private queries require an API key. ● Simple way to manage: configparser ● Store key in a config file ● Read it during startup
  • 11.
  • 12.
    Read the APIkey from the config import configparser config = configparser.ConfigParser() config.read('demobot.cfg') api_key = config.get('demobot', 'api_key')
  • 13.
  • 14.
    Print your balances query= requests.get( 'https://masterxchange.com/api/v2/private/balances.php' , headers={'User-Agent': 'demobot/0.1'}, params={'APIkey': api_key} ) print('query.status_code =', query.status_code) if query.status_code < 300: query_text = _without_utf8_bom(query.text) print('query_text = %r...' % query_text[:40]) balances_result = json.loads(query_text) if balances_result['error_code'] == 0: balances = balances_result['balances'] print('balances =', balances)
  • 15.
    Print your balances- result query.status_code = 200 query_text = '{"balances":{"total": {"btc":0,"msc":0,"m'... balances = {'total': {'xcpjenga': 0, 'colzoidy': 0, 'coltdu': 0, 'xcpopcu': 0, 'colgauto': 0, ...}}
  • 16.
    Masterexchange error handling 1.Httpstatus < 300? 2.Query result error_code = 0? 3.Process actual data in query result
  • 17.
    Wrap error handlingin Exceptions class BotError(Exception): pass class HttpsConnection(object): ... def query(self, function_name, payload=None, use_api_key=True): function_url = 'https://masterxchange.com/api/v2/%s.php' % function_name actual_payload = {} if payload is None else dict(payload) if use_api_key: actual_payload['APIkey'] = self._api_key headers = {'User-Agent': 'demobot/0.1'} r = requests.get(function_url, headers=headers, params=actual_payload) if r.status_code >= 300: raise BotError( 'cannot query %s with %s: HTTP error code=%d' % (function_url, actual_payload, r.status_code)) result = json.loads( r.text[3:] if r.text.startswith('xefxbbxbf') else r.text) if use_api_key and (result['error_code'] != 0): raise BotError( 'cannot query %s with %s: %s' % (function_url, actual_payload, result['error_message'])) return result
  • 18.
  • 19.
    Processing monetary values ●Use decimal instead of float http://floating-point-gui.de/ ● Python has a decimal module: https://docs.python.org/3/library/decimal.html ● json and configparser only support float → convert after reading and before writing ● Bitcoin uses 8 digits after decimal separator
  • 20.
    Use formatting fordecimals >>> from decimal import Decimal >>> print(Decimal('0.00000001')) 1E-8 >>> print('%.8f' % Decimal('0.00000001')) 0.00000001
  • 21.
    Modes of operation ●Advise: only suggest to sell or buy → user has to manually initiate transactions ● Lower risk for “stupid” transactions ● Might miss opportunities due slow reaction time ● Helpful when trying out a hopefully improved trading algorithm ● Action: automatically sell and buy on market conditions deemed favorable ● Can react quickly to changes ● Possibility for epic fail on buggy trading algorithms ● Recommendation: reduce risk (but also opportunities) by limiting amount traded per transaction and hour, stop loss limits etc.
  • 22.
    Basic bot loop 1.Updateown balances 2.Update open orders on the market 3.Apply trading algorithm and decide next action 4.Possibly buy or sell 5.Wait some time 6.Repeat
  • 23.
    Trading algorithms On thelong run, nothing really works
  • 24.
    Some simple tradingalgorithms ● Spread between 2 different but interchangeable items; e.g. Team Fortress 2's keys and earbuds: http://icrontic.com/article/tf2-black-market-explained ● Delayed correlation between two items; e.g. stocks for Coca Cola and Pepsi: http://www.investopedia.com/university/guide-pairs-trading/pairs-trading-correlation.asp ● Wait for slips from sellers, buy “unusually” cheap items and resell for “normal” price; article about such a bot (violating terms of service): http://diablo3story.blogspot.com.au/2014/07/a-diablo-3-story.html
  • 25.
  • 26.
    Tracking statistics ● Collectstatistics in database ● To debug bot decisions ● To improve trading algorithm ● To monitor market conditions
  • 27.
    Sqlite ● Robust andstable ● Efficient for single client use ● Easy to set up ● Included with Python: https://docs.python.org/3/library/sqlite3.html ● Rather creative type system ● “Real” instead of “decimal” ● “int” for timestamp instead of “datetime” type ● Type anarchy concerning comparison ● http://www.sqlite.org/datatype3.html
  • 28.
    Create a statisticsdatabase def _create_database(self, database_path): _log.info('connect to database %r', database_path) result = sqlite3.connect(database_path) with closing(result.cursor()) as cursor: cursor.execute(""" create table if not exists balances ( action char(4) not null, balance_time int not null, btc real not null, maid real not null, price_per_maid real not null, transferred int not null ) """) cursor.execute(""" create index if not exists idx_balance_time on balances (balance_time) """) result.commit() return result
  • 29.
    Insert a statisticsrow values_to_insert = ( action, int(time.time()), float(self.btc_balance), float(self.maid_balance), float(price_per_maid), int(maid_transferred), ) with closing(self._database.cursor()) as cursor: cursor.execute(""" insert into balances ( action, balance_time, btc, maid, price_per_maid, transferred ) values (?, ?, ?, ?, ?, ?) """, values_to_insert) self._database.commit()
  • 30.
    Logging ● More detailedtracking of trading decisions than database ● But no easy structured analysis ● Use logging Module https://docs.python.org/3/library/logging.html ● Use RotatingFileHandler https://docs.python.org/3/library/logging.handler s.html#rotatingfilehandler
  • 31.
    Example logging configuration1/2 # Logging configuration as described in # <https://docs.python.org/3/howto/logging-cookbook.html>. [loggers] keys=root,demobot [handlers] keys=console,file [formatters] keys=default [logger_root] level=DEBUG handlers=console,file [logger_demobot] level=DEBUG handlers=console,file qualname=demobot propagate=0
  • 32.
    Example logging configuration2/2 [handler_console] class=StreamHandler level=INFO formatter=default args=(sys.stderr,) [handler_file] class=RotatingFileHandler level=DEBUG formatter=default args=('/tmp/demobot.log', mode='a', maxBytes=1000000, backupCount=5, encoding='utf-8') [formatter_default] format=%(asctime)s - %(name)s - %(levelname)s - %(message)s datefmt=
  • 33.
  • 34.
    Testing challenges ● Networkcommunication is slow ● Many sites have limits on transactions per second ● Testing actual orders requires money
  • 35.
    Mock-up connections withscenarios ● Scenarios are simple text file containing expected queries and JSON results ● The test case makes a decisions that results in a query, parses the scenarios JSON result, and makes the next decision and query ● Scenarios can be maintained by domain experts
  • 36.
    Example scenario file #got maid, no open orders # the bot should create a maid-order for 500maid and 0.10000001btc/maid private/balances { "balances": { "total":{"btc":0.9,"maid":500}, "available" {"btc":0,"maid":0} }, "error_message":"", "error_code":0 } private/openedOrders { "open_orders": [], "error_message":"", "error_code":0 } orderbook [ {"market":"maid_btc","type":"sell","amount":"120.00000000","price":"0.20000000","date_created":"1401077847"}, {"market":"maid_btc","type":"buy","amount":"270.00000000","price":"0.10000000","date_created":"1418566454"} ] private/createOrder
  • 37.
    Scenario implementation ● Botconstructor gets a connection ● Class HttpConnection → query() returns JSON from Masterexchange ● Class ScenarioConnection → query() checks that function matches next line in scenario file and if so returns next JSON from it Audience feedback: try Gherkin! https://pypi.python.org/pypi/gherkin3
  • 38.
  • 39.
    Summary ● Python hasmany useful libraries to quickly implement simple trading bots. ● You probably won't get rich. ● It's fun!