KEMBAR78
Marrying Web Analytics and User Experience | KEY
Marrying Web Analytics
and User Experience
Louis Rosenfeld • 5 August 2009
Delve NYC • Brooklyn
                    1
Web Analytics?

    User Experience?




2
Code “DELVE” for 25% off
 at rosenfeldmedia.com
           3
My recent
struggle



            4
CONTRASTING WEB ANALYTICS AND USER EXPERIENCE
                       5
Who we are
       How we do our work
       What data we use
       How we use that data

CONTRASTING WEB ANALYTICS AND USER EXPERIENCE
                       5
WHO WE ARE
ARE THE STEREOTYPES TRUE?
                            6
VIVE LA DIFFÉRENCE! (FROM MARKO HURST)
                               7
!"#$%&"'()*+),%(-).(%("-&/)0(1/*$%)
        Behavioral                                                   /       Eyetracking                            Data Mining/Analysis
                                                                                                                    A/B (Live) Testing

                                                                     Usability Benchmarking (in lab)



                                                                                                /
             Data Source
                                    Usability Lab Studies                                            Online User Experience Assessments
                                                                                                     (“Vividence-like” studies)


                                    Ethnographic Field Studies
                           mix




                                                                      Diary/Camera Study
                                                                      Message Board Mining
                                    Participatory Design              Customer feedback via email
                                    Focus Groups                              Desirability studies                  Intercept Surveys
        Attitudinal                 Phone Interviews                          Cardsorting                           Email Surveys

                                                                                   mix
                                 Qualitative (direct)                        Approach                       Quantitative (indirect)
                                  Key for Context of Product Use during data collection
                                    Natural use of product                               De-contextualized / not using product
    © 2008 Christian Rohrer         Scripted (often lab-based) use of product            Combination / hybrid
                                                                                                                                     20


HOW USER EXPERIENCE PEOPLE SEE THEIR WORK
(FROM CHRISTIAN ROHRER)
                                                                         8
!"#$%&"'()*+),%(-).(%("-&/)0(1/*$%)
        Behavioral                                                   /       Eyetracking                            Data Mining/Analysis
                                                                                                                    A/B (Live) Testing

                                                                     Usability Benchmarking (in lab)



                                                                                                /
             Data Source
                                    Usability Lab Studies                                            Online User Experience Assessments
                                                                                                     (“Vividence-like” studies)


                                    Ethnographic Field Studies
                           mix




                                                                      Diary/Camera Study
                                                                      Message Board Mining
                                    Participatory Design              Customer feedback via email
                                    Focus Groups                              Desirability studies                  Intercept Surveys
        Attitudinal                 Phone Interviews                          Cardsorting                           Email Surveys

                                                                                   mix
                                 Qualitative (direct)                        Approach                       Quantitative (indirect)
                                  Key for Context of Product Use during data collection
                                    Natural use of product                               De-contextualized / not using product
    © 2008 Christian Rohrer         Scripted (often lab-based) use of product            Combination / hybrid
                                                                                                                                     20


HOW USER EXPERIENCE PEOPLE SEE THEIR WORK
(FROM CHRISTIAN ROHRER)
                                                                         8
HOW WEB ANALYTICS PEOPLE SEE THEIR WORK
(FROM AVINASH KAUSHIK)	
                       9
HOW WEB ANALYTICS PEOPLE SEE THEIR WORK
(FROM AVINASH KAUSHIK)	
                       9
The data that
drives our decisions




              10
The data that
drives our decisions
     Web Analytics                User Experience

       behavioral                     attitudinal

      quantitative                   qualitative

      high fidelity                     artificial

      high volume                    high quality

 This data is about WHAT        This data is about WHY

                           10
The data that
drives our decisions
     Web Analytics                User Experience

       behavioral                     attitudinal

      quantitative                   qualitative

      high fidelity                     artificial

      high volume                    high quality

 This data is about WHAT        This data is about WHY

                           10
The data that
drives our decisions
     Web Analytics                User Experience

       behavioral                     attitudinal

      quantitative                   qualitative

      high fidelity                     artificial

      high volume                    high quality

 This data is about WHAT        This data is about WHY

                           10
The data that
drives our decisions
     Web Analytics                User Experience

       behavioral                     attitudinal

      quantitative                   qualitative

      high fidelity                     artificial

      high volume                    high quality

 This data is about WHAT        This data is about WHY

                           10
The data that
drives our decisions
     Web Analytics                User Experience

       behavioral                     attitudinal

      quantitative                   qualitative

      high fidelity                     artificial

      high volume                    high quality

 This data is about WHAT        This data is about WHY

                           10
The data that
drives our decisions
     Web Analytics                User Experience

       behavioral                     attitudinal

      quantitative                   qualitative

      high fidelity                     artificial

      high volume                    high quality

 This data is about WHAT        This data is about WHY

                           10
Not much use to know
what is happening if you
don’t know why




             11
Not much use to know
what is happening if you
don’t know why

Hard to know why things
are happening if you don’t
know what is happening
             11
The ways we analyze
our data



           12
The ways we analyze
our data



           12
The ways we analyze
our data



           12
XXX.XXX.X.104 - - [10/Jul/2006:10:25:46 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200
  971 0 0.02
XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ie=UTF-8&client=www&q=license+plate
  &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX
  X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16
XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=regional+transportation+governance
  +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17




                               13
XXX.XXX.X.104 - - [10/Jul/2006:10:25:46 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200
  971 0 0.02
XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ie=UTF-8&client=www&q=license+plate
  &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX
  X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16
XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=regional+transportation+governance
  +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17




                               14
XXX.XXX.X.104 - - [10/Jul/2006:10:25:46 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200
  971 0 0.02
XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ie=UTF-8&client=www&q=license+plate
  &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX
  X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16
XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=regional+transportation+governance
  +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17




  Q “What were the most
  common searches?”
                               14
XXX.XXX.X.104 - - [10/Jul/2006:10:25:46 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200
  971 0 0.02
XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ie=UTF-8&client=www&q=license+plate
  &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX
  X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16
XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=regional+transportation+governance
  +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17




  Q “What were the most
  common searches?”
                               14
Analyzing data
the UX way:
play with the data,
look for patterns, trends,
and outliers
Analyzing data
the UX way:
play with the data,
look for patterns, trends,
and outliers

So what’s being measured?
XXX.XXX.X.104 - - [10/Jul/2006:10:25:46 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200
  971 0 0.02
XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ie=UTF-8&client=www&q=license+plate
  &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX
  X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16
XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=regional+transportation+governance
  +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17




                               16
XXX.XXX.X.104 - - [10/Jul/2006:10:25:46 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200
  971 0 0.02
XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ie=UTF-8&client=www&q=license+plate
  &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX
  X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16
XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search?
  access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL
  %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty
  lesheet=www&q=regional+transportation+governance
  +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17




  Q “Are we converting
  license plate renewals?”
                               16
Before data analysis:
why are we here?
★ Commerce
★ Lead Generation
★ Content/Media
★ Support/Self-Service

              17
Before data analysis:
why are we here?
★ Commerce
★ Lead Generation
★ Content/Media
★ Support/Self-Service
Data supports metrics
              17
Analyzing data
the WA way:
start with metrics,
benchmark and
measure performance
Analyzing data
the WA way:
start with metrics,
benchmark and
measure performance
But you can’t measure
what you don’t know
WA: Top-down analysis
UX: Bottom-up analysis



           19
what

WA: Top-down analysis
UX: Bottom-up analysis



           19
what

WA: Top-down analysis
UX: Bottom-up analysis

                    why
           19
INTEGRATING WEB ANALYTICS AND USER EXPERIENCE
                       20
Integrating methodologies:
What, then why



            21
Common queries
can drive task analysis




               22
Common queries
can drive task analysis
                      “Can you find a map of
                      the campus?”

                      “What study abroad
                      options are available to
                      students?”

                      “When is the last home
                      football game of the
                      season?”



               22
Query data
can augment
personas




              23
Query data
can augment
personas



   “What Steven Searches”
   added to existing persona
   (from Adaptive Path)

                               23
Looking ahead
★ How do we improve other
qualitative methods with data?
★ How do qualitative data
impact quantitative analyses?
              24
Methodology takeaways:
★ Qualitative research is
expensive
★ Start with quantitative
research to identify where/when
to use qualitative methods
              25
Changing how we analyze:
Moving away from
the middle

           26
27
28
What’s in
the middle?




              28
What’s in
the middle?

Your analytics app’s
canned reports

              28
Netflix moved away
from the middle




            29
Netflix moved away
from the middle




            29
Netflix moved away
from the middle




            29
Netflix moved away
from the middle




            29
Netflix moved away
from the middle




            29
Analysis takeaways
★ Canned reports are only a
starting point
★ Move up, move down
★ Be prepared to “roll your own”
★ Demand better ad hoc
reporting from analytics apps
              30
Changing our thinking:
Getting comfortable with
the other

            31
UX people need to get
comfortable with
measuring the
unmeasurable
            32
Can you measure
your content’s
quality?
Systems can help
us objectify the
subjective
                   33
Subjective
                        evaluations...




Can you measure
your content’s
quality?
Systems can help
us objectify the
subjective
                   33
Subjective
                        evaluations...


                                   ...lead to
Can you measure                   objective
                                  decisions
your content’s
quality?
Systems can help
us objectify the
subjective
                   33
UX people need to get
comfortable with numbers
(but just a little)

           34
This is not statistics




               35
This is not statistics
This is not difficult




               35
This is not statistics
This is not difficult
This is very useful




               35
This is not statistics
This is not difficult
This is very useful
(and this is in MS Excel)




              35
WA people need to get
comfortable with stories

            36
WA people need to
understand the value of
intuition and mistakes

            38
C# '&DE#F
<=>>?@A=B

!""#$%&'()*+*(,%+-'.()/-0%'(12*3(4+'(5"6()%'-#7%/ !
!"#$%&'#()*+,-.#/0/1#23#*'#456#3,5#17#1778.#17.19:#;6&%-#

                                !"#$%#&%'(&)%*#+,")#$%%-.#/(01#2($3,4.#5((1+%6"#)('#*%"714%&.#8,"#9(4:7&3%*#)8,)#8%6"#+%,;741#
                                <$%#8%,&#)(#=$7))%&>?#2($3,46"#&%,"(4"#:(&#@07))741#,&%#:,"974,)741#A#,4*#)8%B#"8($#$8B#
                                5((1+%6"#+("741#7)"#9((+?


                                2($3,4#C(74%*#5((1+%#)8&%%#B%,&"#,1(#A#)((#+,)%.#8%#4($#",B"?#=8%#9(3',4B6"#%4174%%&"D:7&")#
                                90+)0&%#$,"#:7&3+B#74#'+,9%.#3%,4741#%;%&B#*%97"7(4#8,*#)(#E%#'&(;%4#)8&(018#%F8,0")7;%#)%")741.#
                                &,)8%&#)8,4#,#&%+7,49%#(4#,#9+%,&#;7"7(4#(:#5((1+%6"#*%"714?#!4*#74#,#E,9-8,4*%*#"+,3#,)#5((1+%#GH#
                                I,&7"",#I,B%&.#)8%#8%,*#(:#J0"%&#%F'%&7%49%.J#8%#4()%"#)8,)#)('#3,4,1%3%4)#74#98,&1%#(:#*%"714#
                                8,*#4()#E,9-1&(04*#74#)8%#:7%+*K


     L8%4#,#9(3',4B#7"#:7++%*#$7)8#%4174%%&".#7)#)0&4"#)(#%4174%%&741#)(#"(+;%#'&(E+%3"?#M%*09%#%,98#*%97"7(4#)(#,#"73'+%#+(179#
     '&(E+%3?#M%3(;%#,++#"0EC%9)7;7)B#,4*#C0")#+((-#,)#)8%#*,),?#/,),#74#B(0&#:,;(&N#O-.#+,0498#7)?#/,),#"8($"#4%1,)7;%#%::%9)"N#2,9-#)(#
     )8%#*&,$741#E(,&*?#!4*#)8,)#*,),#%;%4)0,++B#E%9(3%"#,#9&0)98#:(&#%;%&B#*%97"7(4.#',&,+BP741#)8%#9(3',4B#,4*#'&%;%4)741#7)#
     :&(3#3,-741#,4B#*,&741#*%"714#*%97"7(4"? #
     #
     #
     Q%".#7)6"#)&0%#)8,)#,#)%,3#,)#5((1+%#9(0+*46)#*%97*%#E%)$%%4#)$(#E+0%".#"(#)8%B6&%#)%")741#RS#"8,*%"#E%)$%%4#%,98#E+0%#)(#"%%#$8798#
     (4%#'%&:(&3"#E%))%&?#T#8,*#,#&%9%4)#*%E,)%#(;%&#$8%)8%&#,#E(&*%&#"8(0+*#E%#U.#R#(&#V#'7F%+"#$7*%.#,4*#$,"#,"-%*#)(#'&(;%#3B#
     9,"%?#T#9,46)#('%&,)%#74#,4#%4;7&(43%4)#+7-%#)8,)?#T6;%#1&($4#)7&%*#(:#*%E,)741#"098#3747"90+%#*%"714#*%97"7(4"?#=8%&%#,&%#3(&%#
     %F97)741#*%"714#'&(E+%3"#74#)87"#$(&+*#)(#),9-+%?


WF97)741#*%"714#'&(E+%3".#+7-%#)8("%#,)#=$7))%&N#!#"(0&9%#)%++"#0"#)8,)6"#$8%&%#8%6"#1(741.#E0)#2($3,4#8,"46)#9(4:7&3%*#)8,)#
B%)?#<X%#'&(37"%"#)(#*7"9+("%#87"#4%$#%3'+(B%&#74#,#:(++($0'#E+(1#'(")?>
C# '&DE#F
<=>>?@A=B

!""#$%&'()*+*(,%+-'.()/-0%'(12*3(4+'(5"6()%'-#7%/ !
!"#$%&'#()*+,-.#/0/1#23#*'#456#3,5#17#1778.#17.19:#;6&%-#

                                !"#$%#&%'(&)%*#+,")#$%%-.#/(01#2($3,4.#5((1+%6"#)('#*%"714%&.#8,"#9(4:7&3%*#)8,)#8%6"#+%,;741#
                                <$%#8%,&#)(#=$7))%&>?#2($3,46"#&%,"(4"#:(&#@07))741#,&%#:,"974,)741#A#,4*#)8%B#"8($#$8B#
                                5((1+%6"#+("741#7)"#9((+?


                                2($3,4#C(74%*#5((1+%#)8&%%#B%,&"#,1(#A#)((#+,)%.#8%#4($#",B"?#=8%#9(3',4B6"#%4174%%&"D:7&")#
                                90+)0&%#$,"#:7&3+B#74#'+,9%.#3%,4741#%;%&B#*%97"7(4#8,*#)(#E%#'&(;%4#)8&(018#%F8,0")7;%#)%")741.#
                                &,)8%&#)8,4#,#&%+7,49%#(4#,#9+%,&#;7"7(4#(:#5((1+%6"#*%"714?#!4*#74#,#E,9-8,4*%*#"+,3#,)#5((1+%#GH#
                                I,&7"",#I,B%&.#)8%#8%,*#(:#J0"%&#%F'%&7%49%.J#8%#4()%"#)8,)#)('#3,4,1%3%4)#74#98,&1%#(:#*%"714#
                                8,*#4()#E,9-1&(04*#74#)8%#:7%+*K


     L8%4#,#9(3',4B#7"#:7++%*#$7)8#%4174%%&".#7)#)0&4"#)(#%4174%%&741#)(#"(+;%#'&(E+%3"?#M%*09%#%,98#*%97"7(4#)(#,#"73'+%#+(179#
     '&(E+%3?#M%3(;%#,++#"0EC%9)7;7)B#,4*#C0")#+((-#,)#)8%#*,),?#/,),#74#B(0&#:,;(&N#O-.#+,0498#7)?#/,),#"8($"#4%1,)7;%#%::%9)"N#2,9-#)(#
     )8%#*&,$741#E(,&*?#!4*#)8,)#*,),#%;%4)0,++B#E%9(3%"#,#9&0)98#:(&#%;%&B#*%97"7(4.#',&,+BP741#)8%#9(3',4B#,4*#'&%;%4)741#7)#
     :&(3#3,-741#,4B#*,&741#*%"714#*%97"7(4"? #
     #
     #
     Q%".#7)6"#)&0%#)8,)#,#)%,3#,)#5((1+%#9(0+*46)#*%97*%#E%)$%%4#)$(#E+0%".#"(#)8%B6&%#)%")741#RS#"8,*%"#E%)$%%4#%,98#E+0%#)(#"%%#$8798#
     (4%#'%&:(&3"#E%))%&?#T#8,*#,#&%9%4)#*%E,)%#(;%&#$8%)8%&#,#E(&*%&#"8(0+*#E%#U.#R#(&#V#'7F%+"#$7*%.#,4*#$,"#,"-%*#)(#'&(;%#3B#
     9,"%?#T#9,46)#('%&,)%#74#,4#%4;7&(43%4)#+7-%#)8,)?#T6;%#1&($4#)7&%*#(:#*%E,)741#"098#3747"90+%#*%"714#*%97"7(4"?#=8%&%#,&%#3(&%#
     %F97)741#*%"714#'&(E+%3"#74#)87"#$(&+*#)(#),9-+%?


WF97)741#*%"714#'&(E+%3".#+7-%#)8("%#,)#=$7))%&N#!#"(0&9%#)%++"#0"#)8,)6"#$8%&%#8%6"#1(741.#E0)#2($3,4#8,"46)#9(4:7&3%*#)8,)#
B%)?#<X%#'&(37"%"#)(#*7"9+("%#87"#4%$#%3'+(B%&#74#,#:(++($0'#E+(1#'(")?>
C# '&DE#F
<=>>?@A=B

!""#$%&'()*+*(,%+-'.()/-0%'(12*3(4+'(5"6()%'-#7%/ !
!"#$%&'#()*+,-.#/0/1#23#*'#456#3,5#17#1778.#17.19:#;6&%-#

                                !"#$%#&%'(&)%*#+,")#$%%-.#/(01#2($3,4.#5((1+%6"#)('#*%"714%&.#8,"#9(4:7&3%*#)8,)#8%6"#+%,;741#
                                <$%#8%,&#)(#=$7))%&>?#2($3,46"#&%,"(4"#:(&#@07))741#,&%#:,"974,)741#A#,4*#)8%B#"8($#$8B#
                                5((1+%6"#+("741#7)"#9((+?


                                2($3,4#C(74%*#5((1+%#)8&%%#B%,&"#,1(#A#)((#+,)%.#8%#4($#",B"?#=8%#9(3',4B6"#%4174%%&"D:7&")#
                                90+)0&%#$,"#:7&3+B#74#'+,9%.#3%,4741#%;%&B#*%97"7(4#8,*#)(#E%#'&(;%4#)8&(018#%F8,0")7;%#)%")741.#
                                &,)8%&#)8,4#,#&%+7,49%#(4#,#9+%,&#;7"7(4#(:#5((1+%6"#*%"714?#!4*#74#,#E,9-8,4*%*#"+,3#,)#5((1+%#GH#
                                I,&7"",#I,B%&.#)8%#8%,*#(:#J0"%&#%F'%&7%49%.J#8%#4()%"#)8,)#)('#3,4,1%3%4)#74#98,&1%#(:#*%"714#
                                8,*#4()#E,9-1&(04*#74#)8%#:7%+*K


     L8%4#,#9(3',4B#7"#:7++%*#$7)8#%4174%%&".#7)#)0&4"#)(#%4174%%&741#)(#"(+;%#'&(E+%3"?#M%*09%#%,98#*%97"7(4#)(#,#"73'+%#+(179#
     '&(E+%3?#M%3(;%#,++#"0EC%9)7;7)B#,4*#C0")#+((-#,)#)8%#*,),?#/,),#74#B(0&#:,;(&N#O-.#+,0498#7)?#/,),#"8($"#4%1,)7;%#%::%9)"N#2,9-#)(#
     )8%#*&,$741#E(,&*?#!4*#)8,)#*,),#%;%4)0,++B#E%9(3%"#,#9&0)98#:(&#%;%&B#*%97"7(4.#',&,+BP741#)8%#9(3',4B#,4*#'&%;%4)741#7)#
     :&(3#3,-741#,4B#*,&741#*%"714#*%97"7(4"? #
     #
     #
     Q%".#7)6"#)&0%#)8,)#,#)%,3#,)#5((1+%#9(0+*46)#*%97*%#E%)$%%4#)$(#E+0%".#"(#)8%B6&%#)%")741#RS#"8,*%"#E%)$%%4#%,98#E+0%#)(#"%%#$8798#
     (4%#'%&:(&3"#E%))%&?#T#8,*#,#&%9%4)#*%E,)%#(;%&#$8%)8%&#,#E(&*%&#"8(0+*#E%#U.#R#(&#V#'7F%+"#$7*%.#,4*#$,"#,"-%*#)(#'&(;%#3B#
     9,"%?#T#9,46)#('%&,)%#74#,4#%4;7&(43%4)#+7-%#)8,)?#T6;%#1&($4#)7&%*#(:#*%E,)741#"098#3747"90+%#*%"714#*%97"7(4"?#=8%&%#,&%#3(&%#
     %F97)741#*%"714#'&(E+%3"#74#)87"#$(&+*#)(#),9-+%?


WF97)741#*%"714#'&(E+%3".#+7-%#)8("%#,)#=$7))%&N#!#"(0&9%#)%++"#0"#)8,)6"#$8%&%#8%6"#1(741.#E0)#2($3,4#8,"46)#9(4:7&3%*#)8,)#
B%)?#<X%#'&(37"%"#)(#*7"9+("%#87"#4%$#%3'+(B%&#74#,#:(++($0'#E+(1#'(")?>
Tom Chi:
“Think of your designer as a guide in this
multi-variate optimization process. A good
designer has been all over parts of the territory
a dozen times on various projects and has
studied the design patterns and techniques
that help in different problems/situations.
Because of this, he or she has intuition on how
to approach a problem, just as an experienced
software architect has intuition on software
design approaches that provide different
benefits/drawbacks.”
                       40
UX and WA people need
to talk together about
project goals

            41
42
Vanguard and the
quantification of search
                            Target    Oct 3   Oct 10   Oct 16
 Mean distance from 1st         3     13        7        5
 Median distance from 1st       2      7        3        1
 Count: Below 1st             47%    84%      62%      58%

 Count: Below 5th             12%    58%      38%      14%

 Count: Below 10th             7%    38%      10%      7%

 Precision – Strict           42%    15%      36%      39%
 Precision – Loose            71%    38%      53%      65%
 Precision – Permissive       96%    55%      72%      92%




Note: quantification, not monetization
Changing thinking
takeaways
★ Most things can be quantified
★ Stories and emotions can
make stronger cases than data,
and for data
★ We need more talking, and
more listening
              44
Challenges: how do we...
★ Bridge cultural gaps?
★ Get different groups to speak
the same language?
★ Design and manage integrated
teams?
★ Find better, more open tools?
★ Develop a unified methodology?
             45
Do we have a choice?
          An individual often uses
          only half their brain

          Effective teams and
          organizations use both
          halves


            46
Some day my book
will come...
Search Analytics for Your Site:
Conversations with Your Customers

Louis Rosenfeld & Marko Hurst
Rosenfeld Media, 2009.

rosenfeldmedia.com/books/searchanalytics


                            48
Until then...
Louis Rosenfeld
457 Third Street, #4R
Brooklyn, NY 11215 USA

lou@louisrosenfeld.com
www.louisrosenfeld.com
www.rosenfeldmedia.com
Twitter:
	 @louisrosenfeld
	 @rosenfeldmedia

This presentation @ http://www.slideshare.net/lrosenfeld

Marrying Web Analytics and User Experience

  • 1.
    Marrying Web Analytics andUser Experience Louis Rosenfeld • 5 August 2009 Delve NYC • Brooklyn 1
  • 2.
    Web Analytics? User Experience? 2
  • 3.
    Code “DELVE” for25% off at rosenfeldmedia.com 3
  • 4.
  • 5.
    CONTRASTING WEB ANALYTICSAND USER EXPERIENCE 5
  • 6.
    Who we are How we do our work What data we use How we use that data CONTRASTING WEB ANALYTICS AND USER EXPERIENCE 5
  • 7.
    WHO WE ARE ARETHE STEREOTYPES TRUE? 6
  • 8.
    VIVE LA DIFFÉRENCE!(FROM MARKO HURST) 7
  • 9.
    !"#$%&"'()*+),%(-).(%("-&/)0(1/*$%) Behavioral / Eyetracking Data Mining/Analysis A/B (Live) Testing Usability Benchmarking (in lab) / Data Source Usability Lab Studies Online User Experience Assessments (“Vividence-like” studies) Ethnographic Field Studies mix Diary/Camera Study Message Board Mining Participatory Design Customer feedback via email Focus Groups Desirability studies Intercept Surveys Attitudinal Phone Interviews Cardsorting Email Surveys mix Qualitative (direct) Approach Quantitative (indirect) Key for Context of Product Use during data collection Natural use of product De-contextualized / not using product © 2008 Christian Rohrer Scripted (often lab-based) use of product Combination / hybrid 20 HOW USER EXPERIENCE PEOPLE SEE THEIR WORK (FROM CHRISTIAN ROHRER) 8
  • 10.
    !"#$%&"'()*+),%(-).(%("-&/)0(1/*$%) Behavioral / Eyetracking Data Mining/Analysis A/B (Live) Testing Usability Benchmarking (in lab) / Data Source Usability Lab Studies Online User Experience Assessments (“Vividence-like” studies) Ethnographic Field Studies mix Diary/Camera Study Message Board Mining Participatory Design Customer feedback via email Focus Groups Desirability studies Intercept Surveys Attitudinal Phone Interviews Cardsorting Email Surveys mix Qualitative (direct) Approach Quantitative (indirect) Key for Context of Product Use during data collection Natural use of product De-contextualized / not using product © 2008 Christian Rohrer Scripted (often lab-based) use of product Combination / hybrid 20 HOW USER EXPERIENCE PEOPLE SEE THEIR WORK (FROM CHRISTIAN ROHRER) 8
  • 11.
    HOW WEB ANALYTICSPEOPLE SEE THEIR WORK (FROM AVINASH KAUSHIK) 9
  • 12.
    HOW WEB ANALYTICSPEOPLE SEE THEIR WORK (FROM AVINASH KAUSHIK) 9
  • 13.
    The data that drivesour decisions 10
  • 14.
    The data that drivesour decisions Web Analytics User Experience behavioral attitudinal quantitative qualitative high fidelity artificial high volume high quality This data is about WHAT This data is about WHY 10
  • 15.
    The data that drivesour decisions Web Analytics User Experience behavioral attitudinal quantitative qualitative high fidelity artificial high volume high quality This data is about WHAT This data is about WHY 10
  • 16.
    The data that drivesour decisions Web Analytics User Experience behavioral attitudinal quantitative qualitative high fidelity artificial high volume high quality This data is about WHAT This data is about WHY 10
  • 17.
    The data that drivesour decisions Web Analytics User Experience behavioral attitudinal quantitative qualitative high fidelity artificial high volume high quality This data is about WHAT This data is about WHY 10
  • 18.
    The data that drivesour decisions Web Analytics User Experience behavioral attitudinal quantitative qualitative high fidelity artificial high volume high quality This data is about WHAT This data is about WHY 10
  • 19.
    The data that drivesour decisions Web Analytics User Experience behavioral attitudinal quantitative qualitative high fidelity artificial high volume high quality This data is about WHAT This data is about WHY 10
  • 20.
    Not much useto know what is happening if you don’t know why 11
  • 21.
    Not much useto know what is happening if you don’t know why Hard to know why things are happening if you don’t know what is happening 11
  • 22.
    The ways weanalyze our data 12
  • 23.
    The ways weanalyze our data 12
  • 24.
    The ways weanalyze our data 12
  • 25.
    XXX.XXX.X.104 - -[10/Jul/2006:10:25:46 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200 971 0 0.02 XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ie=UTF-8&client=www&q=license+plate &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16 XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=regional+transportation+governance +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17 13
  • 26.
    XXX.XXX.X.104 - -[10/Jul/2006:10:25:46 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200 971 0 0.02 XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ie=UTF-8&client=www&q=license+plate &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16 XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=regional+transportation+governance +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17 14
  • 27.
    XXX.XXX.X.104 - -[10/Jul/2006:10:25:46 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200 971 0 0.02 XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ie=UTF-8&client=www&q=license+plate &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16 XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=regional+transportation+governance +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17 Q “What were the most common searches?” 14
  • 28.
    XXX.XXX.X.104 - -[10/Jul/2006:10:25:46 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200 971 0 0.02 XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ie=UTF-8&client=www&q=license+plate &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16 XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=regional+transportation+governance +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17 Q “What were the most common searches?” 14
  • 29.
    Analyzing data the UXway: play with the data, look for patterns, trends, and outliers
  • 30.
    Analyzing data the UXway: play with the data, look for patterns, trends, and outliers So what’s being measured?
  • 31.
    XXX.XXX.X.104 - -[10/Jul/2006:10:25:46 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200 971 0 0.02 XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ie=UTF-8&client=www&q=license+plate &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16 XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=regional+transportation+governance +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17 16
  • 32.
    XXX.XXX.X.104 - -[10/Jul/2006:10:25:46 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=lincense+plate&ip=XXX.XXX.X.104 HTTP/1.1" 200 971 0 0.02 XXX.XXX.X.104 - - [10/Jul/2006:10:25:48 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ie=UTF-8&client=www&q=license+plate &ud=1&site=AllSites&spell=1&oe=UTF-8&proxystylesheet=www&ip=XX X.XXX.X.104 HTTP/1.1" 200 8283 146 0.16 XXX.XXX.XX.130 - - [10/Jul/2006:10:24:38 -0800] "GET /search? access=p&entqr=0&output=xml_no_dtd&sort=date%3AD%3AL %3Ad1&ud=1&site=AllSites&ie=UTF-8&client=www&oe=UTF-8&proxysty lesheet=www&q=regional+transportation+governance +commission&ip=XXX.XXX.X.130 HTTP/1.1" 200 9718 62 0.17 Q “Are we converting license plate renewals?” 16
  • 33.
    Before data analysis: whyare we here? ★ Commerce ★ Lead Generation ★ Content/Media ★ Support/Self-Service 17
  • 34.
    Before data analysis: whyare we here? ★ Commerce ★ Lead Generation ★ Content/Media ★ Support/Self-Service Data supports metrics 17
  • 35.
    Analyzing data the WAway: start with metrics, benchmark and measure performance
  • 36.
    Analyzing data the WAway: start with metrics, benchmark and measure performance But you can’t measure what you don’t know
  • 37.
    WA: Top-down analysis UX:Bottom-up analysis 19
  • 38.
    what WA: Top-down analysis UX:Bottom-up analysis 19
  • 39.
    what WA: Top-down analysis UX:Bottom-up analysis why 19
  • 40.
    INTEGRATING WEB ANALYTICSAND USER EXPERIENCE 20
  • 41.
  • 42.
    Common queries can drivetask analysis 22
  • 43.
    Common queries can drivetask analysis “Can you find a map of the campus?” “What study abroad options are available to students?” “When is the last home football game of the season?” 22
  • 44.
  • 45.
    Query data can augment personas “What Steven Searches” added to existing persona (from Adaptive Path) 23
  • 46.
    Looking ahead ★ Howdo we improve other qualitative methods with data? ★ How do qualitative data impact quantitative analyses? 24
  • 47.
    Methodology takeaways: ★ Qualitativeresearch is expensive ★ Start with quantitative research to identify where/when to use qualitative methods 25
  • 48.
    Changing how weanalyze: Moving away from the middle 26
  • 49.
  • 50.
  • 51.
  • 52.
    What’s in the middle? Youranalytics app’s canned reports 28
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
    Analysis takeaways ★ Cannedreports are only a starting point ★ Move up, move down ★ Be prepared to “roll your own” ★ Demand better ad hoc reporting from analytics apps 30
  • 59.
    Changing our thinking: Gettingcomfortable with the other 31
  • 60.
    UX people needto get comfortable with measuring the unmeasurable 32
  • 61.
    Can you measure yourcontent’s quality? Systems can help us objectify the subjective 33
  • 62.
    Subjective evaluations... Can you measure your content’s quality? Systems can help us objectify the subjective 33
  • 63.
    Subjective evaluations... ...lead to Can you measure objective decisions your content’s quality? Systems can help us objectify the subjective 33
  • 64.
    UX people needto get comfortable with numbers (but just a little) 34
  • 65.
    This is notstatistics 35
  • 66.
    This is notstatistics This is not difficult 35
  • 67.
    This is notstatistics This is not difficult This is very useful 35
  • 68.
    This is notstatistics This is not difficult This is very useful (and this is in MS Excel) 35
  • 69.
    WA people needto get comfortable with stories 36
  • 72.
    WA people needto understand the value of intuition and mistakes 38
  • 73.
    C# '&DE#F <=>>?@A=B !""#$%&'()*+*(,%+-'.()/-0%'(12*3(4+'(5"6()%'-#7%/ ! !"#$%&'#()*+,-.#/0/1#23#*'#456#3,5#17#1778.#17.19:#;6&%-# !"#$%#&%'(&)%*#+,")#$%%-.#/(01#2($3,4.#5((1+%6"#)('#*%"714%&.#8,"#9(4:7&3%*#)8,)#8%6"#+%,;741# <$%#8%,&#)(#=$7))%&>?#2($3,46"#&%,"(4"#:(&#@07))741#,&%#:,"974,)741#A#,4*#)8%B#"8($#$8B# 5((1+%6"#+("741#7)"#9((+? 2($3,4#C(74%*#5((1+%#)8&%%#B%,&"#,1(#A#)((#+,)%.#8%#4($#",B"?#=8%#9(3',4B6"#%4174%%&"D:7&")# 90+)0&%#$,"#:7&3+B#74#'+,9%.#3%,4741#%;%&B#*%97"7(4#8,*#)(#E%#'&(;%4#)8&(018#%F8,0")7;%#)%")741.# &,)8%&#)8,4#,#&%+7,49%#(4#,#9+%,&#;7"7(4#(:#5((1+%6"#*%"714?#!4*#74#,#E,9-8,4*%*#"+,3#,)#5((1+%#GH# I,&7"",#I,B%&.#)8%#8%,*#(:#J0"%&#%F'%&7%49%.J#8%#4()%"#)8,)#)('#3,4,1%3%4)#74#98,&1%#(:#*%"714# 8,*#4()#E,9-1&(04*#74#)8%#:7%+*K L8%4#,#9(3',4B#7"#:7++%*#$7)8#%4174%%&".#7)#)0&4"#)(#%4174%%&741#)(#"(+;%#'&(E+%3"?#M%*09%#%,98#*%97"7(4#)(#,#"73'+%#+(179# '&(E+%3?#M%3(;%#,++#"0EC%9)7;7)B#,4*#C0")#+((-#,)#)8%#*,),?#/,),#74#B(0&#:,;(&N#O-.#+,0498#7)?#/,),#"8($"#4%1,)7;%#%::%9)"N#2,9-#)(# )8%#*&,$741#E(,&*?#!4*#)8,)#*,),#%;%4)0,++B#E%9(3%"#,#9&0)98#:(&#%;%&B#*%97"7(4.#',&,+BP741#)8%#9(3',4B#,4*#'&%;%4)741#7)# :&(3#3,-741#,4B#*,&741#*%"714#*%97"7(4"? # # # Q%".#7)6"#)&0%#)8,)#,#)%,3#,)#5((1+%#9(0+*46)#*%97*%#E%)$%%4#)$(#E+0%".#"(#)8%B6&%#)%")741#RS#"8,*%"#E%)$%%4#%,98#E+0%#)(#"%%#$8798# (4%#'%&:(&3"#E%))%&?#T#8,*#,#&%9%4)#*%E,)%#(;%&#$8%)8%&#,#E(&*%&#"8(0+*#E%#U.#R#(&#V#'7F%+"#$7*%.#,4*#$,"#,"-%*#)(#'&(;%#3B# 9,"%?#T#9,46)#('%&,)%#74#,4#%4;7&(43%4)#+7-%#)8,)?#T6;%#1&($4#)7&%*#(:#*%E,)741#"098#3747"90+%#*%"714#*%97"7(4"?#=8%&%#,&%#3(&%# %F97)741#*%"714#'&(E+%3"#74#)87"#$(&+*#)(#),9-+%? WF97)741#*%"714#'&(E+%3".#+7-%#)8("%#,)#=$7))%&N#!#"(0&9%#)%++"#0"#)8,)6"#$8%&%#8%6"#1(741.#E0)#2($3,4#8,"46)#9(4:7&3%*#)8,)# B%)?#<X%#'&(37"%"#)(#*7"9+("%#87"#4%$#%3'+(B%&#74#,#:(++($0'#E+(1#'(")?>
  • 74.
    C# '&DE#F <=>>?@A=B !""#$%&'()*+*(,%+-'.()/-0%'(12*3(4+'(5"6()%'-#7%/ ! !"#$%&'#()*+,-.#/0/1#23#*'#456#3,5#17#1778.#17.19:#;6&%-# !"#$%#&%'(&)%*#+,")#$%%-.#/(01#2($3,4.#5((1+%6"#)('#*%"714%&.#8,"#9(4:7&3%*#)8,)#8%6"#+%,;741# <$%#8%,&#)(#=$7))%&>?#2($3,46"#&%,"(4"#:(&#@07))741#,&%#:,"974,)741#A#,4*#)8%B#"8($#$8B# 5((1+%6"#+("741#7)"#9((+? 2($3,4#C(74%*#5((1+%#)8&%%#B%,&"#,1(#A#)((#+,)%.#8%#4($#",B"?#=8%#9(3',4B6"#%4174%%&"D:7&")# 90+)0&%#$,"#:7&3+B#74#'+,9%.#3%,4741#%;%&B#*%97"7(4#8,*#)(#E%#'&(;%4#)8&(018#%F8,0")7;%#)%")741.# &,)8%&#)8,4#,#&%+7,49%#(4#,#9+%,&#;7"7(4#(:#5((1+%6"#*%"714?#!4*#74#,#E,9-8,4*%*#"+,3#,)#5((1+%#GH# I,&7"",#I,B%&.#)8%#8%,*#(:#J0"%&#%F'%&7%49%.J#8%#4()%"#)8,)#)('#3,4,1%3%4)#74#98,&1%#(:#*%"714# 8,*#4()#E,9-1&(04*#74#)8%#:7%+*K L8%4#,#9(3',4B#7"#:7++%*#$7)8#%4174%%&".#7)#)0&4"#)(#%4174%%&741#)(#"(+;%#'&(E+%3"?#M%*09%#%,98#*%97"7(4#)(#,#"73'+%#+(179# '&(E+%3?#M%3(;%#,++#"0EC%9)7;7)B#,4*#C0")#+((-#,)#)8%#*,),?#/,),#74#B(0&#:,;(&N#O-.#+,0498#7)?#/,),#"8($"#4%1,)7;%#%::%9)"N#2,9-#)(# )8%#*&,$741#E(,&*?#!4*#)8,)#*,),#%;%4)0,++B#E%9(3%"#,#9&0)98#:(&#%;%&B#*%97"7(4.#',&,+BP741#)8%#9(3',4B#,4*#'&%;%4)741#7)# :&(3#3,-741#,4B#*,&741#*%"714#*%97"7(4"? # # # Q%".#7)6"#)&0%#)8,)#,#)%,3#,)#5((1+%#9(0+*46)#*%97*%#E%)$%%4#)$(#E+0%".#"(#)8%B6&%#)%")741#RS#"8,*%"#E%)$%%4#%,98#E+0%#)(#"%%#$8798# (4%#'%&:(&3"#E%))%&?#T#8,*#,#&%9%4)#*%E,)%#(;%&#$8%)8%&#,#E(&*%&#"8(0+*#E%#U.#R#(&#V#'7F%+"#$7*%.#,4*#$,"#,"-%*#)(#'&(;%#3B# 9,"%?#T#9,46)#('%&,)%#74#,4#%4;7&(43%4)#+7-%#)8,)?#T6;%#1&($4#)7&%*#(:#*%E,)741#"098#3747"90+%#*%"714#*%97"7(4"?#=8%&%#,&%#3(&%# %F97)741#*%"714#'&(E+%3"#74#)87"#$(&+*#)(#),9-+%? WF97)741#*%"714#'&(E+%3".#+7-%#)8("%#,)#=$7))%&N#!#"(0&9%#)%++"#0"#)8,)6"#$8%&%#8%6"#1(741.#E0)#2($3,4#8,"46)#9(4:7&3%*#)8,)# B%)?#<X%#'&(37"%"#)(#*7"9+("%#87"#4%$#%3'+(B%&#74#,#:(++($0'#E+(1#'(")?>
  • 75.
    C# '&DE#F <=>>?@A=B !""#$%&'()*+*(,%+-'.()/-0%'(12*3(4+'(5"6()%'-#7%/ ! !"#$%&'#()*+,-.#/0/1#23#*'#456#3,5#17#1778.#17.19:#;6&%-# !"#$%#&%'(&)%*#+,")#$%%-.#/(01#2($3,4.#5((1+%6"#)('#*%"714%&.#8,"#9(4:7&3%*#)8,)#8%6"#+%,;741# <$%#8%,&#)(#=$7))%&>?#2($3,46"#&%,"(4"#:(&#@07))741#,&%#:,"974,)741#A#,4*#)8%B#"8($#$8B# 5((1+%6"#+("741#7)"#9((+? 2($3,4#C(74%*#5((1+%#)8&%%#B%,&"#,1(#A#)((#+,)%.#8%#4($#",B"?#=8%#9(3',4B6"#%4174%%&"D:7&")# 90+)0&%#$,"#:7&3+B#74#'+,9%.#3%,4741#%;%&B#*%97"7(4#8,*#)(#E%#'&(;%4#)8&(018#%F8,0")7;%#)%")741.# &,)8%&#)8,4#,#&%+7,49%#(4#,#9+%,&#;7"7(4#(:#5((1+%6"#*%"714?#!4*#74#,#E,9-8,4*%*#"+,3#,)#5((1+%#GH# I,&7"",#I,B%&.#)8%#8%,*#(:#J0"%&#%F'%&7%49%.J#8%#4()%"#)8,)#)('#3,4,1%3%4)#74#98,&1%#(:#*%"714# 8,*#4()#E,9-1&(04*#74#)8%#:7%+*K L8%4#,#9(3',4B#7"#:7++%*#$7)8#%4174%%&".#7)#)0&4"#)(#%4174%%&741#)(#"(+;%#'&(E+%3"?#M%*09%#%,98#*%97"7(4#)(#,#"73'+%#+(179# '&(E+%3?#M%3(;%#,++#"0EC%9)7;7)B#,4*#C0")#+((-#,)#)8%#*,),?#/,),#74#B(0&#:,;(&N#O-.#+,0498#7)?#/,),#"8($"#4%1,)7;%#%::%9)"N#2,9-#)(# )8%#*&,$741#E(,&*?#!4*#)8,)#*,),#%;%4)0,++B#E%9(3%"#,#9&0)98#:(&#%;%&B#*%97"7(4.#',&,+BP741#)8%#9(3',4B#,4*#'&%;%4)741#7)# :&(3#3,-741#,4B#*,&741#*%"714#*%97"7(4"? # # # Q%".#7)6"#)&0%#)8,)#,#)%,3#,)#5((1+%#9(0+*46)#*%97*%#E%)$%%4#)$(#E+0%".#"(#)8%B6&%#)%")741#RS#"8,*%"#E%)$%%4#%,98#E+0%#)(#"%%#$8798# (4%#'%&:(&3"#E%))%&?#T#8,*#,#&%9%4)#*%E,)%#(;%&#$8%)8%&#,#E(&*%&#"8(0+*#E%#U.#R#(&#V#'7F%+"#$7*%.#,4*#$,"#,"-%*#)(#'&(;%#3B# 9,"%?#T#9,46)#('%&,)%#74#,4#%4;7&(43%4)#+7-%#)8,)?#T6;%#1&($4#)7&%*#(:#*%E,)741#"098#3747"90+%#*%"714#*%97"7(4"?#=8%&%#,&%#3(&%# %F97)741#*%"714#'&(E+%3"#74#)87"#$(&+*#)(#),9-+%? WF97)741#*%"714#'&(E+%3".#+7-%#)8("%#,)#=$7))%&N#!#"(0&9%#)%++"#0"#)8,)6"#$8%&%#8%6"#1(741.#E0)#2($3,4#8,"46)#9(4:7&3%*#)8,)# B%)?#<X%#'&(37"%"#)(#*7"9+("%#87"#4%$#%3'+(B%&#74#,#:(++($0'#E+(1#'(")?>
  • 76.
    Tom Chi: “Think ofyour designer as a guide in this multi-variate optimization process. A good designer has been all over parts of the territory a dozen times on various projects and has studied the design patterns and techniques that help in different problems/situations. Because of this, he or she has intuition on how to approach a problem, just as an experienced software architect has intuition on software design approaches that provide different benefits/drawbacks.” 40
  • 77.
    UX and WApeople need to talk together about project goals 41
  • 78.
  • 79.
    Vanguard and the quantificationof search Target Oct 3 Oct 10 Oct 16 Mean distance from 1st 3 13 7 5 Median distance from 1st 2 7 3 1 Count: Below 1st 47% 84% 62% 58% Count: Below 5th 12% 58% 38% 14% Count: Below 10th 7% 38% 10% 7% Precision – Strict 42% 15% 36% 39% Precision – Loose 71% 38% 53% 65% Precision – Permissive 96% 55% 72% 92% Note: quantification, not monetization
  • 80.
    Changing thinking takeaways ★ Mostthings can be quantified ★ Stories and emotions can make stronger cases than data, and for data ★ We need more talking, and more listening 44
  • 81.
    Challenges: how dowe... ★ Bridge cultural gaps? ★ Get different groups to speak the same language? ★ Design and manage integrated teams? ★ Find better, more open tools? ★ Develop a unified methodology? 45
  • 82.
    Do we havea choice? An individual often uses only half their brain Effective teams and organizations use both halves 46
  • 84.
    Some day mybook will come... Search Analytics for Your Site: Conversations with Your Customers Louis Rosenfeld & Marko Hurst Rosenfeld Media, 2009. rosenfeldmedia.com/books/searchanalytics 48
  • 85.
    Until then... Louis Rosenfeld 457Third Street, #4R Brooklyn, NY 11215 USA lou@louisrosenfeld.com www.louisrosenfeld.com www.rosenfeldmedia.com Twitter: @louisrosenfeld @rosenfeldmedia This presentation @ http://www.slideshare.net/lrosenfeld

Editor's Notes

  • #6 http://www.nif.or.jp/eng/graph/M7.gif http://interactions.acm.org/i/XV/wine.jpg
  • #7 Camille Jordan: http://myoops.fgu.edu.tw/twocw/mit/NR/rdonlyres/Mathematics/18-700Fall-2005/4AC2EE51-AA81-45EA-AB73-1935A7F3BAFC/0/chp_jordan2.jpg Arthur Rimbaud: http://www.stevesilberman.com/celestial/rimbaud/rimbaud.jpg Those dreaming eyes: are the looking upon the same thing?
  • #10 Avinash Kaushik: &amp;#x201C;Trinity: A Mindset &amp; Strategic Approach&amp;#x201D; (http://www.kaushik.net/avinash/2006/08/trinity-a-mindset-strategic-approach.html)
  • #11 Analysis versus synthesis comes from Lindsay Ellerby article in UXMatters: http://www.uxmatters.com/mt/archives/2009/04/analysis-plus-synthesis-turning-data-into-insights.php
  • #12 Analysis versus synthesis comes from Lindsay Ellerby article in UXMatters: http://www.uxmatters.com/mt/archives/2009/04/analysis-plus-synthesis-turning-data-into-insights.php
  • #13 Analysis versus synthesis comes from Lindsay Ellerby article in UXMatters: http://www.uxmatters.com/mt/archives/2009/04/analysis-plus-synthesis-turning-data-into-insights.php
  • #14 Analysis versus synthesis comes from Lindsay Ellerby article in UXMatters: http://www.uxmatters.com/mt/archives/2009/04/analysis-plus-synthesis-turning-data-into-insights.php
  • #15 Analysis versus synthesis comes from Lindsay Ellerby article in UXMatters: http://www.uxmatters.com/mt/archives/2009/04/analysis-plus-synthesis-turning-data-into-insights.php
  • #16 Analysis versus synthesis comes from Lindsay Ellerby article in UXMatters: http://www.uxmatters.com/mt/archives/2009/04/analysis-plus-synthesis-turning-data-into-insights.php
  • #17 Bottom line and &amp;#x201C;top line&amp;#x201D;
  • #20 This is how I would do it
  • #21 This is how I&amp;#x2019;d do it
  • #22 This is how I&amp;#x2019;d do it
  • #24 This is how my co-author would do it
  • #25 Start with KPI, then add data
  • #33 Feedback loop
  • #34 Start with KPI, then add data
  • #37 The reports are often as far as we go But they&amp;#x2019;re often useless &amp;#x2022; No deep, custom analysis (top-down) &amp;#x2022; No exploratory data analysis (bottom-up)
  • #38 The reports are often as far as we go But they&amp;#x2019;re often useless &amp;#x2022; No deep, custom analysis (top-down) &amp;#x2022; No exploratory data analysis (bottom-up)
  • #39 &amp;#x201C;The center can not hold!&amp;#x201D; You&amp;#x2019;ll notice this isn&amp;#x2019;t a canned report This all means putting pressure on commercial analytics apps to change
  • #40 &amp;#x201C;The center can not hold!&amp;#x201D; You&amp;#x2019;ll notice this isn&amp;#x2019;t a canned report This all means putting pressure on commercial analytics apps to change
  • #41 &amp;#x201C;The center can not hold!&amp;#x201D; You&amp;#x2019;ll notice this isn&amp;#x2019;t a canned report This all means putting pressure on commercial analytics apps to change
  • #42 &amp;#x201C;The center can not hold!&amp;#x201D; You&amp;#x2019;ll notice this isn&amp;#x2019;t a canned report This all means putting pressure on commercial analytics apps to change
  • #43 Start with KPI, then add data
  • #49 you can do this, regardless of how you feel about data note that it&amp;#x2019;s in Excel
  • #50 you can do this, regardless of how you feel about data note that it&amp;#x2019;s in Excel
  • #51 you can do this, regardless of how you feel about data note that it&amp;#x2019;s in Excel
  • #52 Yes, data can tell stories And sometimes stories make a better case than reports
  • #55 Actually, both sides (Bowman&amp;#x2019;s and Google&amp;#x2019;s) are valid But while it won&amp;#x2019;t always be possible to combine WA and UX (in some orgs, one perspective is far dominant--e.g., engineering at Google), you&amp;#x2019;ve got to come halfway But... weren&amp;#x2019;t Page and Brin designers of a sort when they started out?
  • #56 Actually, both sides (Bowman&amp;#x2019;s and Google&amp;#x2019;s) are valid But while it won&amp;#x2019;t always be possible to combine WA and UX (in some orgs, one perspective is far dominant--e.g., engineering at Google), you&amp;#x2019;ve got to come halfway But... weren&amp;#x2019;t Page and Brin designers of a sort when they started out?