This document discusses neural network models for natural language processing tasks like machine translation. It describes how recurrent neural networks (RNNs) were used initially but had limitations in capturing long-term dependencies and parallelization. The encoder-decoder framework addressed some issues but still lost context. Attention mechanisms allowed focusing on relevant parts of the input and using all encoded states. Transformers replaced RNNs entirely with self-attention and encoder-decoder attention, allowing parallelization while generating a richer representation capturing word relationships. This revolutionized NLP tasks like machine translation.