KEMBAR78
Python_Matplotlib_13_Slides_With_Diagrams.pptx
Data Visualization Using Python
Matplotlib
• An Overview of Python’s Powerful Plotting
Library
• Presented by: [Your Name]
Introduction to Data Visualization
• • Importance of visualizing data
• • Common chart types
• • Helps identify trends and outliers
What is Matplotlib?
• • A plotting library for Python
• • Part of the SciPy stack
• • Created by John D. Hunter
Installing and Importing Matplotlib
• • Install: pip install matplotlib
• • Import: import matplotlib.pyplot as plt
Matplotlib Architecture
• • Figure, Axes, and Axis
• • Object-oriented vs. Pyplot interface
Creating Basic Plots
• • Line plot syntax: plt.plot(x, y)
• • Used to show trends over time
Bar and Histogram Charts
• • Bar: plt.bar()
• • Histogram: plt.hist()
• • Useful for categorical and frequency data
Scatter Plots and Customization
• • Syntax: plt.scatter(x, y)
• • Customize markers, size, and color
Pie Charts
• • Syntax: plt.pie()
• • Show parts of a whole
Subplots and Layouts
• • Multiple plots using plt.subplot() or
plt.subplots()
• • Useful for comparing data
Styling and Customizing Plots
• • Titles: plt.title()
• • Labels: plt.xlabel(), plt.ylabel()
• • Legends and grid
Saving and Exporting Figures
• • Syntax: plt.savefig('filename.png')
• • Formats: PNG, PDF, SVG
Conclusion and Applications
• • Easy to use and highly customizable
• • Used in Data Science, Machine Learning, etc.

Python_Matplotlib_13_Slides_With_Diagrams.pptx

  • 1.
    Data Visualization UsingPython Matplotlib • An Overview of Python’s Powerful Plotting Library • Presented by: [Your Name]
  • 2.
    Introduction to DataVisualization • • Importance of visualizing data • • Common chart types • • Helps identify trends and outliers
  • 3.
    What is Matplotlib? •• A plotting library for Python • • Part of the SciPy stack • • Created by John D. Hunter
  • 4.
    Installing and ImportingMatplotlib • • Install: pip install matplotlib • • Import: import matplotlib.pyplot as plt
  • 5.
    Matplotlib Architecture • •Figure, Axes, and Axis • • Object-oriented vs. Pyplot interface
  • 6.
    Creating Basic Plots •• Line plot syntax: plt.plot(x, y) • • Used to show trends over time
  • 7.
    Bar and HistogramCharts • • Bar: plt.bar() • • Histogram: plt.hist() • • Useful for categorical and frequency data
  • 8.
    Scatter Plots andCustomization • • Syntax: plt.scatter(x, y) • • Customize markers, size, and color
  • 9.
    Pie Charts • •Syntax: plt.pie() • • Show parts of a whole
  • 10.
    Subplots and Layouts •• Multiple plots using plt.subplot() or plt.subplots() • • Useful for comparing data
  • 11.
    Styling and CustomizingPlots • • Titles: plt.title() • • Labels: plt.xlabel(), plt.ylabel() • • Legends and grid
  • 12.
    Saving and ExportingFigures • • Syntax: plt.savefig('filename.png') • • Formats: PNG, PDF, SVG
  • 13.
    Conclusion and Applications •• Easy to use and highly customizable • • Used in Data Science, Machine Learning, etc.