KEMBAR78
Using Apache Spark and MySQL for Data Analysis | PDF
Using Apache Spark and MySQL
for Data Analysis
Alexander Rubin, Sveta Smirnova
Percona
February, 4, 2017
www.percona.com
Agenda
• Why Spark?
• Spark Examples
– Wikistats analysis with Spark
www.percona.com
Data /
SQL / Protocol
SQL/
App
What is Spark anyway?
Nodes
Parallel Compute only
Local
FS
?
www.percona.com
• In memory processing with caching
• Massively Parallel
• Direct access to data sources (i.e.MySQL)
>>> df = sqlContext.load(source="jdbc",
url="jdbc:mysql://localhost?user=root",
dbtable="ontime.ontime_sm”)
• Can store data in Hadoop HDFS / S3 /
local Filesystem
• Native Python and R integration
Why Spark?
www.percona.com
Spark vs MySQL
www.percona.com
Spark vs. MySQL for BigData
Indexes
Partitioning
“Sharding”
Full table scan
Partitioning
Map/Reduce
www.percona.com
Spark (vs. MySQL)
• No indexes
• All processing is full scan
• BUT: distributed and parallel
• No transactions
• High latency (usually)
MySQL:
1 query = 1 CPU core
www.percona.com
Indexes (BTree) for Big Data
challenge
• Creating an index for Petabytes of data?
• Updating an index for Petabytes of data?
• Reading a terabyte index?
• Random read of Petabyte?
Full scan in parallel is better for big data
www.percona.com
ETL / Pipeline
1. Extract data from
external source
2. Transform before
loading
3. Load data into
MySQL
1. Extract data from
external source
2. Load data or rsync to
all spark nodes
3. Transform
data/Analyze
data/Visualize data;
Parallelism
www.percona.com
Schema on Read
Schema on Write
• Load data infile will
verify the input (validate)
• … indirect data
conversion
• ... or fail if number of
cols is wrong
Schema on Read
• No “load data” per se,
nothing to validate here
• … Create external table or
read csv
• ... will validate on “read”/
select
www.percona.com
Example:
Loading wikistat into MySQL
1. Extract data
from external
source and
uncompress!
2. Load data into
MySQL and
Transform
Wikipedia page counts –
download, >10TB
load data local infile '$file'
into table wikistats.wikistats_full
CHARACTER SET latin1
FIELDS TERMINATED BY ' '
(project_name, title, num_requests,
content_size)
set request_date =
STR_TO_DATE('$datestr',
'%Y%m%d %H%i%S'),
title_md5=unhex(md5(title));
http://dumps.wikimedia.org/other/pagecounts-raw/
www.percona.com
Load timing per hour of wikistat
• InnoDB: 52.34 sec
• MyISAM: 11.08 sec (+ indexes)
• 1 hour of wikistats =1 minute
• 1 year will load in 6 days
– (8765.81 hours in 1 year)
• 6 year = > 1 month to load
Not even counting
the insert time
degradation…
www.percona.com
Loading wikistat as is into
Spark
• Just copy files to storage (AWS S3 / local /
etc)…
– And create SQL structure
• Or read csv, aggregate/filter in Spark and
– load the aggregated data into MySQL
www.percona.com
Loading wikistat as is into
Spark
• How fast to search?
– Depends upon the number of nodes
• 1000 nodes spark cluster
– 4.5 TB, 104 Billion records
– Exec time: 45 sec
– Scanning 4.5TB of data
• http://spark-summit.org/wp-content/uploads/2014/07/Building-
1000-node-Spark-Cluster-on-EMR.pdf
www.percona.com
Pipelines: MySQL vs Spark
www.percona.com
Spark and WikiStats: load pipeline
Row(project=p[0],
url=urllib.unquote(p[1]).lower(),
num_requests=int(p[2]),
content_size=int(p[3])))
www.percona.com
Save results to MySQL
group_res = sqlContext.sql(
"SELECT '"+ mydate + "' as mydate,
url,
count(*) as cnt,
sum(num_requests) as tot_visits
FROM wikistats
GROUP BY url")
# Save to MySQL
mysql_url="jdbc:mysql://localhost?user=wikistats&password=
wikistats”
group_res.write.jdbc(url=mysql_url,
table="wikistats.wikistats_by_day_spark",
mode="append")
www.percona.com
Multi-Threaded Inserts
www.percona.com
PySpark: CPU
Cpu0 : 94.4%us, 0.0%sy, 0.0%ni, 5.6%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu1 : 5.7%us, 0.0%sy, 0.0%ni, 92.4%id, 0.0%wa, 0.0%hi, 1.9%si, 0.0%st
Cpu2 : 95.0%us, 0.0%sy, 0.0%ni, 5.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu3 : 94.9%us, 0.0%sy, 0.0%ni, 5.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu4 : 0.6%us, 0.0%sy, 0.0%ni, 99.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu5 : 94.3%us, 0.0%sy, 0.0%ni, 5.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu6 : 94.3%us, 0.0%sy, 0.0%ni, 5.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu7 : 95.0%us, 0.0%sy, 0.0%ni, 5.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu8 : 94.4%us, 0.0%sy, 0.0%ni, 5.6%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
...
Cpu17 : 94.3%us, 0.0%sy, 0.0%ni, 5.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu18 : 94.3%us, 0.0%sy, 0.0%ni, 5.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu19 : 94.9%us, 0.0%sy, 0.0%ni, 5.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu20 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu21 : 94.9%us, 0.0%sy, 0.0%ni, 5.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu22 : 94.9%us, 0.0%sy, 0.0%ni, 5.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu23 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 49454372k total, 40479496k used, 8974876k free, 357360k buffers
www.percona.com
Monitoring your jobs
www.percona.com
www.percona.com
mysql> SELECT lower(url) as lurl, sum(tot_visits) as max_visits , count(*) FROM
wikistats_by_day_spark where lower(url) not like '%special%' and lower(url) not like
'%page%' and lower(url) not like '%test%' and lower(url) not like '%wiki%' group by
lower(url) order by max_visits desc limit 10;
+--------------------------------------------------------+------------+----------+
| lurl | max_visits | count(*) |
+--------------------------------------------------------+------------+----------+
| heath_ledger | 4247338 | 131 |
| cloverfield | 3846404 | 131 |
| barack_obama | 2238406 | 153 |
| 1925_in_baseball#negro_league_baseball_final_standings | 1791341 | 11 |
| the_dark_knight_(film) | 1417186 | 64 |
| martin_luther_king,_jr. | 1394934 | 136 |
| deaths_in_2008 | 1372510 | 67 |
| united_states | 1357253 | 167 |
| scientology | 1349654 | 108 |
| portal:current_events | 1261538 | 125 |
+--------------------------------------------------------+------------+----------+
10 rows in set (1 hour 22 min 10.02 sec)
Search the WikiStats in MySQL
10 most frequently queried wiki pages in January 2008
www.percona.com
Search the WikiStats in SparkSQL
spark-sql> CREATE TEMPORARY TABLE wikistats_parquet
USING org.apache.spark.sql.parquet
OPTIONS (
path "/ssd/wikistats_parquet_bydate"
);
Time taken: 3.466 seconds
spark-sql> SELECT lower(url) as lurl, sum(tot_visits) as max_visits , count(*) FROM
wikistats_parquet where lower(url) not like '%special%' and lower(url) not like '%page%'
and lower(url) not like '%test%' and lower(url) not like '%wiki%' group by lower(url)
order by max_visits desc limit 10;
heath_ledger 4247335 42
cloverfield 3846400 42
barack_obama 2238402 53
1925_in_baseball#negro_league_baseball_final_standings 1791341 11
the_dark_knight_(film) 1417183 36
martin_luther_king,_jr. 1394934 46
deaths_in_2008 1372510 38
united_states 1357251 55
scientology 1349650 44
portal:current_events 1261305 44
Time taken: 1239.014 seconds, Fetched 10 row(s)
10 most frequently queried wiki pages in January 2008
20 min
www.percona.com
Apache Drill
Treat any datasource
as a table (even it is
not)
Querying MongoDB
with SQL
www.percona.com
Magic?
!=
www.percona.com
Recap…
1. Search full dataset
• May be pre-filtered
• Not aggregated
2. No parallelism
3. Based on index?
4. InnoDB<> Columnar
5. Partitioning?
1. Dataset is already
– Filtered (only site=“en”)
– Aggregated (group by url)
2. Parallelism (+)
3. Not Based on index
4. Columnar (+)
5. Partitioning (+)
www.percona.com
Thank you!
https://www.linkedin.com/in/alexanderrubin
Alexander Rubin

Using Apache Spark and MySQL for Data Analysis

  • 1.
    Using Apache Sparkand MySQL for Data Analysis Alexander Rubin, Sveta Smirnova Percona February, 4, 2017
  • 2.
    www.percona.com Agenda • Why Spark? •Spark Examples – Wikistats analysis with Spark
  • 3.
    www.percona.com Data / SQL /Protocol SQL/ App What is Spark anyway? Nodes Parallel Compute only Local FS ?
  • 4.
    www.percona.com • In memoryprocessing with caching • Massively Parallel • Direct access to data sources (i.e.MySQL) >>> df = sqlContext.load(source="jdbc", url="jdbc:mysql://localhost?user=root", dbtable="ontime.ontime_sm”) • Can store data in Hadoop HDFS / S3 / local Filesystem • Native Python and R integration Why Spark?
  • 5.
  • 6.
    www.percona.com Spark vs. MySQLfor BigData Indexes Partitioning “Sharding” Full table scan Partitioning Map/Reduce
  • 7.
    www.percona.com Spark (vs. MySQL) •No indexes • All processing is full scan • BUT: distributed and parallel • No transactions • High latency (usually) MySQL: 1 query = 1 CPU core
  • 8.
    www.percona.com Indexes (BTree) forBig Data challenge • Creating an index for Petabytes of data? • Updating an index for Petabytes of data? • Reading a terabyte index? • Random read of Petabyte? Full scan in parallel is better for big data
  • 9.
    www.percona.com ETL / Pipeline 1.Extract data from external source 2. Transform before loading 3. Load data into MySQL 1. Extract data from external source 2. Load data or rsync to all spark nodes 3. Transform data/Analyze data/Visualize data; Parallelism
  • 10.
    www.percona.com Schema on Read Schemaon Write • Load data infile will verify the input (validate) • … indirect data conversion • ... or fail if number of cols is wrong Schema on Read • No “load data” per se, nothing to validate here • … Create external table or read csv • ... will validate on “read”/ select
  • 11.
    www.percona.com Example: Loading wikistat intoMySQL 1. Extract data from external source and uncompress! 2. Load data into MySQL and Transform Wikipedia page counts – download, >10TB load data local infile '$file' into table wikistats.wikistats_full CHARACTER SET latin1 FIELDS TERMINATED BY ' ' (project_name, title, num_requests, content_size) set request_date = STR_TO_DATE('$datestr', '%Y%m%d %H%i%S'), title_md5=unhex(md5(title)); http://dumps.wikimedia.org/other/pagecounts-raw/
  • 12.
    www.percona.com Load timing perhour of wikistat • InnoDB: 52.34 sec • MyISAM: 11.08 sec (+ indexes) • 1 hour of wikistats =1 minute • 1 year will load in 6 days – (8765.81 hours in 1 year) • 6 year = > 1 month to load Not even counting the insert time degradation…
  • 13.
    www.percona.com Loading wikistat asis into Spark • Just copy files to storage (AWS S3 / local / etc)… – And create SQL structure • Or read csv, aggregate/filter in Spark and – load the aggregated data into MySQL
  • 14.
    www.percona.com Loading wikistat asis into Spark • How fast to search? – Depends upon the number of nodes • 1000 nodes spark cluster – 4.5 TB, 104 Billion records – Exec time: 45 sec – Scanning 4.5TB of data • http://spark-summit.org/wp-content/uploads/2014/07/Building- 1000-node-Spark-Cluster-on-EMR.pdf
  • 15.
  • 16.
    www.percona.com Spark and WikiStats:load pipeline Row(project=p[0], url=urllib.unquote(p[1]).lower(), num_requests=int(p[2]), content_size=int(p[3])))
  • 17.
    www.percona.com Save results toMySQL group_res = sqlContext.sql( "SELECT '"+ mydate + "' as mydate, url, count(*) as cnt, sum(num_requests) as tot_visits FROM wikistats GROUP BY url") # Save to MySQL mysql_url="jdbc:mysql://localhost?user=wikistats&password= wikistats” group_res.write.jdbc(url=mysql_url, table="wikistats.wikistats_by_day_spark", mode="append")
  • 18.
  • 19.
    www.percona.com PySpark: CPU Cpu0 :94.4%us, 0.0%sy, 0.0%ni, 5.6%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 5.7%us, 0.0%sy, 0.0%ni, 92.4%id, 0.0%wa, 0.0%hi, 1.9%si, 0.0%st Cpu2 : 95.0%us, 0.0%sy, 0.0%ni, 5.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu3 : 94.9%us, 0.0%sy, 0.0%ni, 5.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu4 : 0.6%us, 0.0%sy, 0.0%ni, 99.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu5 : 94.3%us, 0.0%sy, 0.0%ni, 5.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu6 : 94.3%us, 0.0%sy, 0.0%ni, 5.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu7 : 95.0%us, 0.0%sy, 0.0%ni, 5.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu8 : 94.4%us, 0.0%sy, 0.0%ni, 5.6%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st ... Cpu17 : 94.3%us, 0.0%sy, 0.0%ni, 5.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu18 : 94.3%us, 0.0%sy, 0.0%ni, 5.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu19 : 94.9%us, 0.0%sy, 0.0%ni, 5.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu20 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu21 : 94.9%us, 0.0%sy, 0.0%ni, 5.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu22 : 94.9%us, 0.0%sy, 0.0%ni, 5.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu23 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 49454372k total, 40479496k used, 8974876k free, 357360k buffers
  • 20.
  • 21.
  • 22.
    www.percona.com mysql> SELECT lower(url)as lurl, sum(tot_visits) as max_visits , count(*) FROM wikistats_by_day_spark where lower(url) not like '%special%' and lower(url) not like '%page%' and lower(url) not like '%test%' and lower(url) not like '%wiki%' group by lower(url) order by max_visits desc limit 10; +--------------------------------------------------------+------------+----------+ | lurl | max_visits | count(*) | +--------------------------------------------------------+------------+----------+ | heath_ledger | 4247338 | 131 | | cloverfield | 3846404 | 131 | | barack_obama | 2238406 | 153 | | 1925_in_baseball#negro_league_baseball_final_standings | 1791341 | 11 | | the_dark_knight_(film) | 1417186 | 64 | | martin_luther_king,_jr. | 1394934 | 136 | | deaths_in_2008 | 1372510 | 67 | | united_states | 1357253 | 167 | | scientology | 1349654 | 108 | | portal:current_events | 1261538 | 125 | +--------------------------------------------------------+------------+----------+ 10 rows in set (1 hour 22 min 10.02 sec) Search the WikiStats in MySQL 10 most frequently queried wiki pages in January 2008
  • 23.
    www.percona.com Search the WikiStatsin SparkSQL spark-sql> CREATE TEMPORARY TABLE wikistats_parquet USING org.apache.spark.sql.parquet OPTIONS ( path "/ssd/wikistats_parquet_bydate" ); Time taken: 3.466 seconds spark-sql> SELECT lower(url) as lurl, sum(tot_visits) as max_visits , count(*) FROM wikistats_parquet where lower(url) not like '%special%' and lower(url) not like '%page%' and lower(url) not like '%test%' and lower(url) not like '%wiki%' group by lower(url) order by max_visits desc limit 10; heath_ledger 4247335 42 cloverfield 3846400 42 barack_obama 2238402 53 1925_in_baseball#negro_league_baseball_final_standings 1791341 11 the_dark_knight_(film) 1417183 36 martin_luther_king,_jr. 1394934 46 deaths_in_2008 1372510 38 united_states 1357251 55 scientology 1349650 44 portal:current_events 1261305 44 Time taken: 1239.014 seconds, Fetched 10 row(s) 10 most frequently queried wiki pages in January 2008 20 min
  • 24.
    www.percona.com Apache Drill Treat anydatasource as a table (even it is not) Querying MongoDB with SQL
  • 25.
  • 26.
    www.percona.com Recap… 1. Search fulldataset • May be pre-filtered • Not aggregated 2. No parallelism 3. Based on index? 4. InnoDB<> Columnar 5. Partitioning? 1. Dataset is already – Filtered (only site=“en”) – Aggregated (group by url) 2. Parallelism (+) 3. Not Based on index 4. Columnar (+) 5. Partitioning (+)
  • 27.