View source on GitHub
|
Converts a SparseTensor of ids into a dense bool indicator tensor.
tf.sparse.to_indicator(
sp_input, vocab_size, name=None
)
The last dimension of sp_input.indices is discarded and replaced with
the values of sp_input. If sp_input.dense_shape = [D0, D1, ..., Dn, K],
then output.shape = [D0, D1, ..., Dn, vocab_size], where
output[d_0, d_1, ..., d_n, sp_input[d_0, d_1, ..., d_n, k]] = True
and False elsewhere in output.
For example, if sp_input.dense_shape = [2, 3, 4] with non-empty values:
[0, 0, 0]: 0
[0, 1, 0]: 10
[1, 0, 3]: 103
[1, 1, 1]: 150
[1, 1, 2]: 149
[1, 1, 3]: 150
[1, 2, 1]: 121
and vocab_size = 200, then the output will be a [2, 3, 200] dense bool
tensor with False everywhere except at positions
(0, 0, 0), (0, 1, 10), (1, 0, 103), (1, 1, 149), (1, 1, 150),
(1, 2, 121).
Note that repeats are allowed in the input SparseTensor.
This op is useful for converting SparseTensors into dense formats for
compatibility with ops that expect dense tensors.
The input SparseTensor must be in row-major order.
Returns | |
|---|---|
| A dense bool indicator tensor representing the indices with specified value. |
Raises | |
|---|---|
TypeError
|
If sp_input is not a SparseTensor.
|
View source on GitHub