View source on GitHub
|
Used in tf.train.Example protos. Contains the mapping from keys to Feature.
Used in the notebooks
| Used in the tutorials |
|---|
An Example proto is a representation of the following python type:
Dict[str,
Union[List[bytes],
List[int64],
List[float]]]
This proto implements the Dict.
int_feature = tf.train.Feature(int64_list=tf.train.Int64List(value=[1, 2, 3, 4]))float_feature = tf.train.Feature(float_list=tf.train.FloatList(value=[1., 2., 3., 4.]))bytes_feature = tf.train.Feature(bytes_list=tf.train.BytesList(value=[b"abc", b"1234"]))example = tf.train.Example(features=tf.train.Features(feature={'my_ints': int_feature,'my_floats': float_feature,'my_bytes': bytes_feature,}))
Use tf.io.parse_example to extract tensors from a serialized Example proto:
tf.io.parse_example(example.SerializeToString(),features = {'my_ints': tf.io.RaggedFeature(dtype=tf.int64),'my_floats': tf.io.RaggedFeature(dtype=tf.float32),'my_bytes': tf.io.RaggedFeature(dtype=tf.string)}){'my_bytes': <tf.Tensor: shape=(2,), dtype=string,numpy=array([b'abc', b'1234'], dtype=object)>,'my_floats': <tf.Tensor: shape=(4,), dtype=float32,numpy=array([1., 2., 3., 4.], dtype=float32)>,'my_ints': <tf.Tensor: shape=(4,), dtype=int64,numpy=array([1, 2, 3, 4])>}
Attributes | |
|---|---|
feature
|
repeated FeatureEntry feature
|
View source on GitHub