View source on GitHub
|
Used in tf.train.Example protos. Holds a list of floats.
Used in the notebooks
| Used in the tutorials |
|---|
An Example proto is a representation of the following python type:
Dict[str,
Union[List[bytes],
List[int64],
List[float]]]
This proto implements the List[float] portion.
from google.protobuf import text_formatexample = text_format.Parse('''features {feature {key: "my_feature"value {float_list {value: [1., 2., 3., 4. ]} } }}''',tf.train.Example())example.features.feature['my_feature'].float_list.value[1.0, 2.0, 3.0, 4.0]
Use tf.io.parse_example to extract tensors from a serialized Example proto:
tf.io.parse_example(example.SerializeToString(),features = {'my_feature': tf.io.RaggedFeature(dtype=tf.float32)}){'my_feature': <tf.Tensor: shape=(4,), dtype=float32,numpy=array([1., 2., 3., 4.], dtype=float32)>}
See the tf.train.Example
guide for usage details.
Attributes | |
|---|---|
value
|
repeated float value
|
View source on GitHub