-
Notifications
You must be signed in to change notification settings - Fork 25.7k
Enable oneDNN QLinear FP32/BF16 output #112126
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Enable oneDNN QLinear FP32/BF16 output #112126
Conversation
[ghstack-poisoned]
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/112126
Note: Links to docs will display an error until the docs builds have been completed. ✅ You can merge normally! (2 Unrelated Failures)As of commit 98ba52d with merge base 0d95378 ( FLAKY - The following job failed but was likely due to flakiness present on trunk:
BROKEN TRUNK - The following job failed but was present on the merge base:👉 Rebase onto the `viable/strict` branch to avoid these failures
This comment was automatically generated by Dr. CI and updates every 15 minutes. |
**Summary** - PR 2 for enabling Int8-Mixed-BF16 PT2E PTQ Quantization with Inductor #111640. - Enable QLinear (relu) with BFloat16 or Float32 output. **TestPlan** ``` python -u -m pytest -s -v test_quantized_op.py -k test_qlinear_pt2e ``` cc jgong5 mingfeima XiaobingSuper sanchitintel ashokei jingxu10 voznesenskym penguinwu EikanWang Guobing-Chen zhuhaozhe blzheng wenzhe-nrv jiayisunx peterbell10 ipiszy yf225 chenyang78 kadeng muchulee8 aakhundov ColinPeppler [ghstack-poisoned]
ghstack-source-id: 45b6cd0 Pull Request resolved: pytorch#112126
**Summary** - PR 2 for enabling Int8-Mixed-BF16 PT2E PTQ Quantization with Inductor #111640. - Enable QLinear (relu) with BFloat16 or Float32 output. **TestPlan** ``` python -u -m pytest -s -v test_quantized_op.py -k test_qlinear_pt2e ``` cc jgong5 mingfeima XiaobingSuper sanchitintel ashokei jingxu10 voznesenskym penguinwu EikanWang Guobing-Chen zhuhaozhe blzheng wenzhe-nrv jiayisunx peterbell10 ipiszy yf225 chenyang78 kadeng muchulee8 aakhundov ColinPeppler [ghstack-poisoned]
ghstack-source-id: 807ea00 Pull Request resolved: pytorch#112126
|
@pytorchbot merge |
Merge startedYour change will be merged once all checks pass (ETA 0-4 Hours). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
…torQuantizer (#112140) **Summary** - PR 3 for enabling Int8-Mixed-BF16 PT2E PTQ Quantization with Inductor #111640. - Remove the output annotation of QConv/QLinear in X86InductorQuantizer. **Test Plan** ``` python -m pytest test_mkldnn_pattern_matcher.py -k test_qconv2d python -m pytest test_mkldnn_pattern_matcher.py -k test_qlinear python -m pytest test_x86inductor_quantizer.py -k Conv2d python -m pytest test_x86inductor_quantizer.py -k Linear ``` Pull Request resolved: #112140 Approved by: https://github.com/jgong5, https://github.com/jerryzh168 ghstack dependencies: #112010, #112126
**Summary** - PR 2 for enabling Int8-Mixed-BF16 PT2E PTQ Quantization with Inductor pytorch#111640. - Enable QLinear (relu) with BFloat16 or Float32 output. **TestPlan** ``` python -u -m pytest -s -v test_quantized_op.py -k test_qlinear_pt2e ``` Pull Request resolved: pytorch#112126 Approved by: https://github.com/jerryzh168, https://github.com/jgong5 ghstack dependencies: pytorch#112010
…torQuantizer (pytorch#112140) **Summary** - PR 3 for enabling Int8-Mixed-BF16 PT2E PTQ Quantization with Inductor pytorch#111640. - Remove the output annotation of QConv/QLinear in X86InductorQuantizer. **Test Plan** ``` python -m pytest test_mkldnn_pattern_matcher.py -k test_qconv2d python -m pytest test_mkldnn_pattern_matcher.py -k test_qlinear python -m pytest test_x86inductor_quantizer.py -k Conv2d python -m pytest test_x86inductor_quantizer.py -k Linear ``` Pull Request resolved: pytorch#112140 Approved by: https://github.com/jgong5, https://github.com/jerryzh168 ghstack dependencies: pytorch#112010, pytorch#112126
**Summary** - PR 2 for enabling Int8-Mixed-BF16 PT2E PTQ Quantization with Inductor pytorch#111640. - Enable QLinear (relu) with BFloat16 or Float32 output. **TestPlan** ``` python -u -m pytest -s -v test_quantized_op.py -k test_qlinear_pt2e ``` Pull Request resolved: pytorch#112126 Approved by: https://github.com/jerryzh168, https://github.com/jgong5 ghstack dependencies: pytorch#112010
…torQuantizer (pytorch#112140) **Summary** - PR 3 for enabling Int8-Mixed-BF16 PT2E PTQ Quantization with Inductor pytorch#111640. - Remove the output annotation of QConv/QLinear in X86InductorQuantizer. **Test Plan** ``` python -m pytest test_mkldnn_pattern_matcher.py -k test_qconv2d python -m pytest test_mkldnn_pattern_matcher.py -k test_qlinear python -m pytest test_x86inductor_quantizer.py -k Conv2d python -m pytest test_x86inductor_quantizer.py -k Linear ``` Pull Request resolved: pytorch#112140 Approved by: https://github.com/jgong5, https://github.com/jerryzh168 ghstack dependencies: pytorch#112010, pytorch#112126
Stack from ghstack (oldest at bottom):
Summary
TestPlan
cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler