1) The document proposes two methods for detecting brain tumors using MRI images - one using traditional machine learning classifiers after segmentation with FCM and feature extraction, and one using a convolutional neural network.
2) For the first method, MRI images undergo preprocessing like skull stripping and noise removal before segmentation with Fuzzy C-Means clustering and morphological operations. Features are then extracted and classified with models like KNN, logistic regression, random forest.
3) For the second method, a 5-layer CNN is used to directly classify tumor images. The CNN includes convolutional, max pooling, flatten, and dense layers to reduce parameters and detect tumors with 92.42% accuracy.