This document provides an overview of different techniques for hyperparameter tuning in machine learning models. It begins with introductions to grid search and random search, then discusses sequential model-based optimization techniques like Bayesian optimization and Tree-of-Parzen Estimators. Evolutionary algorithms like CMA-ES and particle-based methods like particle swarm optimization are also covered. Multi-fidelity methods like successive halving and Hyperband are described, along with recommendations on when to use different techniques. The document concludes by listing several popular libraries for hyperparameter tuning.