KEMBAR78
Functional Systems @ Twitter | PDF
Functional Systems
Or: Functional Functional Programming

Marius Eriksen • Twitter Inc.

@marius • QCon San Francisco ‘14
InfoQ.com: News & Community Site
• 750,000 unique visitors/month
• Published in 4 languages (English, Chinese, Japanese and Brazilian
Portuguese)
• Post content from our QCon conferences
• News 15-20 / week
• Articles 3-4 / week
• Presentations (videos) 12-15 / week
• Interviews 2-3 / week
• Books 1 / month
Watch the video with slide
synchronization on InfoQ.com!
http://www.infoq.com/presentations
/twitter-scala
Purpose of QCon
- to empower software development by facilitating the spread of
knowledge and innovation
Strategy
- practitioner-driven conference designed for YOU: influencers of
change and innovation in your teams
- speakers and topics driving the evolution and innovation
- connecting and catalyzing the influencers and innovators
Highlights
- attended by more than 12,000 delegates since 2007
- held in 9 cities worldwide
Presented at QCon San Francisco
www.qconsf.com
Caveat emptor
Where am I coming from?

• 1k+ engineers working on

• a large scale Internet service

• I build systems — I’m not a PL person

I’m not attempting to be unbiased — this is part
experience report.
Systems
Systems design is largely about managing
complexity.

Need to reduce incidental complexity as much as
possible.

We’ll explore the extent languages help here.
The language isn’t the whole story
Three pieces
Three specific ways in which we’ve used functional
programming for great profit in our systems work:

1. Your server as a function

2. Your state machine as a formula

3. Your software stack as a value
1.
Your server as a function
Modern server software
Highly concurrent

Part of larger distributed systems

Complicated operating environment

• Asynchronous networks

• Partial failures

• Unreliable machines

Need to support many protocols
Futures
Pending Successful Failed
Futures are containers for value
Futures
val a: Future[Int]
a
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
a
b
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
a
b
c
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
a
b
c
d
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
16 b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
16 b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
16
528
b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
16
528
b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
16
528
4
b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
16
528
4
b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
16
528
4
b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
16
528
4
(528,
4)
b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
16
528
4
(528,
4)
b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
16
528
4
(528,
4)
532b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
0 b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
0
512
b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
0
512
Ex
b
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
0
512
Ex
Exb
c
d e
Futures
val a: Future[Int]
val b = a map { x => x + 512 }
val c = a map { x => 64 / x }
val d = Future.join(b,c)
val e = d map { case (x, y) => x + y }
a
0
512
Ex
Ex Exb
c
d e
Dependent composition
Futures may also be defined as a function of other
futures. We call this dependent composition.

Future[T].flatMap[U](

f: T => Future[U]): Future[U]
Given a Future[T], produce a new Future[U].
The returned Future[U] behaves as f applied to t.

The returned Future[U] fails if the outer
Future[T] fails.
Flatmap
def auth(id: Int, pw: String): Future[User]

def get(u: User): Future[UserData]



def getAndAuth(id: Int, pw: String)

: Future[UserData]

= auth(id, pw) flatMap { u => get(u) }
Composing errors
Futures recover from errors by another form of
dependent composition.

Future[T].rescue(

PartialFunction[Throwable,Future[T]])
Like flatMap, but operates over exceptional futures.
Rescue
val f = auth(id, pw) rescue {

case Timeout => auth(id, pw)

}
(This amounts to a single retry.)
Multiple dependent composition
Future.collect[T](fs: Seq[Future[T]])

: Future[Seq[T]]
Waits for all futures to succeed, returning the
sequence of returned values.

The returned future fails should any constituent future
fail.
Segmented search
def querySegment(id: Int, query: String)

: Future[Result]



def search(query: String)

: Future[Set[Result]] = {



val queries: Seq[Future[Result]] = 

for (id <- 0 until NumSegments) yield {

querySegment(id, query)

}



Future.collect(queries) flatMap {

results: Seq[Set[Result]] =>

Future.value(results.flatten.toSet)

}

}
Segmented search
def querySegment(id: Int, query: String)

: Future[Result]



def search(query: String)

: Future[Set[Result]] = {

val queries: Seq[Future[Result]] = 

for (id <- 0 until NumSegments) yield {

querySegment(id, query)

}



Future.collect(queries) flatMap {

results: Seq[Set[Result]] =>

Future.value(results.flatten.toSet)

}

}
search
querySegment
rpc
querySegment
rpc
querySegment
rpc
querySegment
…
rpc…
Services
A service is a kind of asynchronous function.

trait Service[Req, Rep]

extends (Req => Future[Rep])
val http: Service[HttpReq, HttpRep]

val redis: Service[RedisCmd, RedisRep]

val thrift: Service[TFrame, TFrame]
Services are symmetric
// Client:

val http = Http.newService(..)



// Server:

Http.serve(..,

new Service[HttpReq, HttpRep] {

def apply(..) = ..

}

)
// A proxy:

Http.serve(.., Http.newService(..))
Filters
Services represent logical endpoints; filters embody
service agnostic behavior such as:

• Timeouts

• Retries

• Statistics

• Authentication

• Logging
trait Filter[ReqIn, ReqOut, RepIn, RepOut]

extends 

((ReqIn, Service[ReqOut, RepIn]) => Future[RepOut])
ReqIn ReqOut RepIn RepOut
Filter[ReqIn, RepOut, ReqOut, RepIn]
Service[ReqOut, RepIn]
Example: timeout
class TimeoutFilter[Req, Rep](to: Duration)

extends Filter[Req, Rep, Req, Rep] {



def apply(req: Req, svc: Service[Req, Rep]) = 

svc(req).within(to)

}
Example: authentication
class AuthFilter extends

Filter[HttpReq, AuthHttpReq, HttpReq, HttpRep]

{

def apply(

req: HttpReq, 

svc: Service[AuthHttpReq, HttpRep]) =

auth(req) match {

case Ok(authreq) => svc(authreq)

case Failed(exc) => Future.exception(exc)

}

}
Combining filters and services
val timeout = new TimeoutFilter(1.second)

val auth = new AuthFilter
val authAndTimeout = auth andThen timeout
val service: Service[..] = ..
val authAndTimeoutService =

authAndTimeout andThen service
Real world filters
recordHandletime andThen

traceRequest andThen

collectJvmStats andThen

parseRequest andThen

logRequest andThen

recordClientStats andThen

sanitize andThen

respondToHealthCheck andThen

applyTrafficControl andThen

virtualHostServer
Futures, services, & filters
In combination, these form a sort of orthogonal basis
on which we build our server software.

The style of programming encourages good
modularity, separation of concerns.

Most of our systems are phrased as big future
transformers.
Issues
There are some practical shortcomings in treating
futures as persistent values:

1. Decoupling producer from consumer is not
always desirable: we often want to cancel
ongoing work.

2. It’s useful for computations to carry a context
so that implicit computation state needn’t be
passed through everywhere.
Interrupts
val p = new Promise[Int]

p.setInterruptHandler {

case Cancelled =>

if (p.updateIfEmpty(Throw(..)))

cancelUnderlyingOp()

}



val f = p flatMap …



f.raise(Cancelled)
Locals
// Locals are equivalent to 

// thread-locals, but with arbitrary

// delimitation.



val f, g: Future[Int]

val l = new Local[Int]

l() = 123

f flatMap { i =>

l() += i

g map { j =>

l() + j

}

}
monkey.org/~marius/funsrv.pdf
2.
Your state machine as a formula
Service discovery
Backed by ZooKeeper

Maintain convergent view of the cluster of machines

ZooKeeper is notoriously difficult to deal with
correctly

Difficult to reason about the state of your view

In addition, we have to do resource management
com.twitter.util.Var
trait Var[+T] {

def flatMap[U](f: T => Var[U])

: Var[U]

def changes: Event[T]

…

}



trait Event[+T] {

def register(s: Witness[T]): Closable

…

}
A simple example
val x = Var[Int](2)

val y = Var[Int](1)



val z: Var[Int] = for {

x0 <- x

y0 <- y

} yield x0 + y0

// z() == 3

x() = 100 // z() == 101 

y() = 100 // z() == 200
com.twitter.util.Activity
sealed trait State[+T]

case class Ok[T](t: T) extends State[T]

object Pending extends State[Nothing]

case class Failed(exc: Throwable)

extends State[Nothing]


case class Activity[+T](

run: Var[Activity.State[T]]) {

def flatMap[U](f: T => Activity[U])

: Activity[U] = …

…

}
Future : val :: Activity : var
A simple wrapper
// Turn ZooKeeper operations into 

// activities.

case class Zk(underlying: ZooKeeper) {

def globOf(pat: String)

: Activity[Seq[String]] = …



def immutableDataOf(path: String)

: Activity[Option[Buf]] = …



def collectImmutableDataOf(paths: Seq[String])

: Activity[Seq[(String, Option[Buf])]] = {

def get(path: String)

: Activity[(String, Option[Buf])] =

immutableDataOf(path).map(path -> _)

Activity.collect(paths map get)

}

}
Implementing serversets
case class Serverset(zk: Zk) {

def dataOf(pat: String)

: Activity[Seq[(String, Option[Buf])]] =

zk.globOf(pat).flatMap(

zk.collectImmutableDataOf)



def parse(Seq[(String, Option[Buf])])

: Set[SocketAddress] = ..



def entriesOf(pat: String)

: Activity[Set[SocketAddress]] =

dataOf(pat).map(parse)

}
Broken ZK clients
class VarServerSet(v: Var[ServerSet]) {

def entriesOf(path: String)

: Activity[Set[Entry]] = Activity(

v.flatMap(ss =>

ss.entriesOf(path.run))

}
Retrying ZK instance
object Zk {

// Constructor for dynamic ZK

// instance.

def retrying(backoff: Duration)

: Var[Zk]

…

}
Gluing it together
val serverset = VarServerSet(

Zk.retrying(10.seconds).map(zk =>

new ServerSet(zk)))



val set =

serverset.entriesOf(“/foo/bar”)



set.changes.observe({ addrs =>

updateLoadBalancer(addrs)

})
Resource management
trait Event[+T] {

def register(s: Witness[T]): Closable

…

}



trait Closable {

def close(deadline: Time)

: Future[Unit]

…

}
Composable closable
object Closable {

def all(closables: Closable*)

: Closable



def sequence(closables: Closable*)

: Closable



val nop: Closable



def closeOnCollect(

closable: Closable, obj: Object)



…

}
Resource management
Lifetime of observation is entirely determined by
consumer. Everything else composes on top.

Anything in the middle (Var.flatMap) does not
need to be concerned with resource management.

If updates aren’t needed, Vars are closed.
3.
Your software stack as a value
Software configuration
Finagle comprises many modules (filters, services)
which compose together to give the emergent
behavior we want.

They need to be parameterized:

• systems parameters — e.g. pool sizes,
concurrency limits;

• module injection — e.g. stats, logging, tracing.

Prior art: “cake pattern,” dependency injection
frameworks (e.g. Guice)
Ours is a more regular world
We can take advantage of the fact that our software
is highly compositional: e.g. the entire Finagle stack is
expressed in terms of Service composition.

Idea: make it a first class persistent data structure
which can be inspected and transformed.

• injecting a parameter is ‘mapping’ over this data
structure;

• inserting a module is a transformation
com.twitter.finagle.Stack
trait Stack[T] {

def transform(

fn: Stack[T] => Stack[T]): Stack[T]



def ++(right: Stack[T]): Stack[T]

def +:(stk: Stackable[T]): Stack[T]



def make(params: Params): T

}
Nodes
case class Node[T](

mk: (Params, Stack[T]) => Stack[T],

next: Stack[T]

) extends Stack[T] {

def make(params: Params) = 

mk(params, next).make(params)

}



case class Leaf[T](t: T)

extends Stack[T] {

def make(params: Params) = t

}
Parameters
// A typeclass for parameter types

trait Param[P] {

def default: P

}



trait Params {

def apply[P: Param]: P

def contains[P: Param]: Boolean

def +[P: Param](p: P): Params

}
Parameter definition
case class Poolsize(min: Int, max: Int)



implicit object Poolsize

extends Stack.Param[Poolsize] {

val default =

Poolsize(0, 100)

}
Parameter use
val params: Params



val Poolsize(min, max) = params[Poolsize]

…

new Pool(min, max)
Modules
object FailFast {

def module[Req, Rep] =

new Stack.Module2[Stats, Timer, ServiceFactory[Req, Rep]] {

def make(

stats: Stats, 

timer: Timer, 

next: ServiceFactory[Req, Rep]) =

new FailFastFactory(

next, stats.scope("failfast"), timer)

}
Building
val stk = new StackBuilder[ServiceFactory[Req, Rep]]

(nilStack[Req, Rep])



stk.push(ExpiringService.module)

stk.push(FailFastFactory.module)

stk.push(DefaultPool.module)

stk.push(TimeoutFilter.module)

stk.push(FailureAccrualFactory.module)

stk.push(StatsServiceFactory.module)

stk.push(StatsFilter.module)

stk.push(ClientDestTracingFilter.module)

stk.push(MonitorFilter.module)

stk.push(ExceptionSourceFilter.module)



val stack: Stack[ServiceFactory[Req, Rep]] =

stk.result
Using
val params = Params.empty + 

Stats(statsReceiver) +

Poolsize(10, 50) +

…



val factory: ServiceFactory[..] =

stack.make(params)
Modifying
val muxStack = stdStack

.replace(Pool, ReusingPool.module)

.replace(PrepConn, Leaser.module)
Inspection
scala> println(StackClient.newStack[Int, Int])

Node(role = prepfactory, description = PrepFactory)

Node(role = tracer, 

description = Handle span lifecycle events to report tracing from protocols)

Node(role = servicecreationstats, 

description = Track statistics on service creation failures and .. latency)

Node(role = servicetimeout, 

description = Time out service acquisition after a given period)

Node(role = requestdraining, description = RequestDraining)

Node(role = loadbalancer, description = Balance requests across multiple
endpoints)

Node(role = exceptionsource, description = Source exceptions to the service name)

Node(role = monitoring, description = Act as last-resort exception handler)

Node(role = endpointtracing, description = Record remote address of server)

Node(role = requeststats, description = Report request statistics)

Node(role = factorystats, description = Report connection statistics)

Node(role = failureaccrual, 

description = Backoff from hosts that we cannot successfully make requests to)

Node(role = requesttimeout, description = Apply a timeout to requests)

Node(role = pool, description = Control client connection pool)

Node(role = failfast, 

description = Backoff exponentially on connection failure)

Node(role = expiration, 

description = Expire a service after a certain amount of idle time)

Node(role = prepconn, description = PrepConn)

Leaf(role = endpoint, description = endpoint)
Dynamic inspection
What have we learned?
On abstraction
Abstraction has gotten a bad name because of
AbstractBeanFactoryImpls.

Rule of thumb: introduce abstraction when it
increases precision, when it serves to clarify.

Often, we can use abstraction to make things more
explicit.

Avoid needless indirection.
Compose
Composability is one of our greatest assets
— combine simple parts into a whole with emergent
behavior.

• Easy to reason about, test, constituent parts

• Easy to combine in multiple ways

• Enforces modularity

Find your “orthogonal bases.”

• Find abstractions which combine in non
overlapping ways
Decouple, separate concerns
Separate semantics from mechanism; handle
problems separately (and reusably)

• Leads to cleaner, simpler systems

• Simpler user code — pure application logic

• Flexibility in implementation

Leads to a “software tools” approach to systems
engineering.
Keep it simple
Scala, and FP languages generally, are very powerful.
Use the simple features that get you a lot of mileage.

When your platonic ideal API doesn’t quite fit, it’s
okay to dirty it up a little, but be careful.

Be mindful of the tradeoffs of static guarantees with
simplicity and understandability — always remember
the reader!

Software engineering is in part the art of knowing
when to make things worse.
Functional programming
Many tools for complexity management: Immutability,
rich structures, modularity, strong typing.

It’s easier to reason about correctness, but harder to
reason about performance.

Bridging the platonic world of functional
programming to the more practical one requires us to
get dirty.
And have fun! Thanks.
@marius
https://finagle.github.io/
Watch the video with slide synchronization on
InfoQ.com!
http://www.infoq.com/presentations/twitter-
scala

Functional Systems @ Twitter

  • 1.
    Functional Systems Or: FunctionalFunctional Programming Marius Eriksen • Twitter Inc. @marius • QCon San Francisco ‘14
  • 2.
    InfoQ.com: News &Community Site • 750,000 unique visitors/month • Published in 4 languages (English, Chinese, Japanese and Brazilian Portuguese) • Post content from our QCon conferences • News 15-20 / week • Articles 3-4 / week • Presentations (videos) 12-15 / week • Interviews 2-3 / week • Books 1 / month Watch the video with slide synchronization on InfoQ.com! http://www.infoq.com/presentations /twitter-scala
  • 3.
    Purpose of QCon -to empower software development by facilitating the spread of knowledge and innovation Strategy - practitioner-driven conference designed for YOU: influencers of change and innovation in your teams - speakers and topics driving the evolution and innovation - connecting and catalyzing the influencers and innovators Highlights - attended by more than 12,000 delegates since 2007 - held in 9 cities worldwide Presented at QCon San Francisco www.qconsf.com
  • 4.
    Caveat emptor Where amI coming from? • 1k+ engineers working on • a large scale Internet service • I build systems — I’m not a PL person I’m not attempting to be unbiased — this is part experience report.
  • 5.
    Systems Systems design islargely about managing complexity. Need to reduce incidental complexity as much as possible. We’ll explore the extent languages help here.
  • 6.
    The language isn’tthe whole story
  • 7.
    Three pieces Three specificways in which we’ve used functional programming for great profit in our systems work: 1. Your server as a function 2. Your state machine as a formula 3. Your software stack as a value
  • 8.
  • 9.
    Modern server software Highlyconcurrent Part of larger distributed systems Complicated operating environment • Asynchronous networks • Partial failures • Unreliable machines Need to support many protocols
  • 10.
  • 11.
  • 12.
    Futures val a: Future[Int] valb = a map { x => x + 512 } a b
  • 13.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } a b c
  • 14.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) a b c d
  • 15.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a b c d e
  • 16.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 16 b c d e
  • 17.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 16 b c d e
  • 18.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 16 528 b c d e
  • 19.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 16 528 b c d e
  • 20.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 16 528 4 b c d e
  • 21.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 16 528 4 b c d e
  • 22.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 16 528 4 b c d e
  • 23.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 16 528 4 (528, 4) b c d e
  • 24.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 16 528 4 (528, 4) b c d e
  • 25.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 16 528 4 (528, 4) 532b c d e
  • 26.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 0 b c d e
  • 27.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 0 512 b c d e
  • 28.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 0 512 Ex b c d e
  • 29.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 0 512 Ex Exb c d e
  • 30.
    Futures val a: Future[Int] valb = a map { x => x + 512 } val c = a map { x => 64 / x } val d = Future.join(b,c) val e = d map { case (x, y) => x + y } a 0 512 Ex Ex Exb c d e
  • 31.
    Dependent composition Futures mayalso be defined as a function of other futures. We call this dependent composition. Future[T].flatMap[U](
 f: T => Future[U]): Future[U] Given a Future[T], produce a new Future[U]. The returned Future[U] behaves as f applied to t. The returned Future[U] fails if the outer Future[T] fails.
  • 32.
    Flatmap def auth(id: Int,pw: String): Future[User]
 def get(u: User): Future[UserData]
 
 def getAndAuth(id: Int, pw: String)
 : Future[UserData]
 = auth(id, pw) flatMap { u => get(u) }
  • 33.
    Composing errors Futures recoverfrom errors by another form of dependent composition. Future[T].rescue(
 PartialFunction[Throwable,Future[T]]) Like flatMap, but operates over exceptional futures.
  • 34.
    Rescue val f =auth(id, pw) rescue {
 case Timeout => auth(id, pw)
 } (This amounts to a single retry.)
  • 35.
    Multiple dependent composition Future.collect[T](fs:Seq[Future[T]])
 : Future[Seq[T]] Waits for all futures to succeed, returning the sequence of returned values. The returned future fails should any constituent future fail.
  • 36.
    Segmented search def querySegment(id:Int, query: String)
 : Future[Result]
 
 def search(query: String)
 : Future[Set[Result]] = {
 
 val queries: Seq[Future[Result]] = 
 for (id <- 0 until NumSegments) yield {
 querySegment(id, query)
 }
 
 Future.collect(queries) flatMap {
 results: Seq[Set[Result]] =>
 Future.value(results.flatten.toSet)
 }
 }
  • 37.
    Segmented search def querySegment(id:Int, query: String)
 : Future[Result]
 
 def search(query: String)
 : Future[Set[Result]] = {
 val queries: Seq[Future[Result]] = 
 for (id <- 0 until NumSegments) yield {
 querySegment(id, query)
 }
 
 Future.collect(queries) flatMap {
 results: Seq[Set[Result]] =>
 Future.value(results.flatten.toSet)
 }
 } search querySegment rpc querySegment rpc querySegment rpc querySegment … rpc…
  • 38.
    Services A service isa kind of asynchronous function. trait Service[Req, Rep]
 extends (Req => Future[Rep]) val http: Service[HttpReq, HttpRep]
 val redis: Service[RedisCmd, RedisRep]
 val thrift: Service[TFrame, TFrame]
  • 39.
    Services are symmetric //Client:
 val http = Http.newService(..)
 
 // Server:
 Http.serve(..,
 new Service[HttpReq, HttpRep] {
 def apply(..) = ..
 }
 ) // A proxy:
 Http.serve(.., Http.newService(..))
  • 40.
    Filters Services represent logicalendpoints; filters embody service agnostic behavior such as: • Timeouts • Retries • Statistics • Authentication • Logging
  • 41.
    trait Filter[ReqIn, ReqOut,RepIn, RepOut]
 extends 
 ((ReqIn, Service[ReqOut, RepIn]) => Future[RepOut]) ReqIn ReqOut RepIn RepOut Filter[ReqIn, RepOut, ReqOut, RepIn] Service[ReqOut, RepIn]
  • 42.
    Example: timeout class TimeoutFilter[Req,Rep](to: Duration)
 extends Filter[Req, Rep, Req, Rep] {
 
 def apply(req: Req, svc: Service[Req, Rep]) = 
 svc(req).within(to)
 }
  • 43.
    Example: authentication class AuthFilterextends
 Filter[HttpReq, AuthHttpReq, HttpReq, HttpRep]
 {
 def apply(
 req: HttpReq, 
 svc: Service[AuthHttpReq, HttpRep]) =
 auth(req) match {
 case Ok(authreq) => svc(authreq)
 case Failed(exc) => Future.exception(exc)
 }
 }
  • 44.
    Combining filters andservices val timeout = new TimeoutFilter(1.second)
 val auth = new AuthFilter val authAndTimeout = auth andThen timeout val service: Service[..] = .. val authAndTimeoutService =
 authAndTimeout andThen service
  • 45.
    Real world filters recordHandletimeandThen
 traceRequest andThen
 collectJvmStats andThen
 parseRequest andThen
 logRequest andThen
 recordClientStats andThen
 sanitize andThen
 respondToHealthCheck andThen
 applyTrafficControl andThen
 virtualHostServer
  • 48.
    Futures, services, &filters In combination, these form a sort of orthogonal basis on which we build our server software. The style of programming encourages good modularity, separation of concerns. Most of our systems are phrased as big future transformers.
  • 49.
    Issues There are somepractical shortcomings in treating futures as persistent values: 1. Decoupling producer from consumer is not always desirable: we often want to cancel ongoing work. 2. It’s useful for computations to carry a context so that implicit computation state needn’t be passed through everywhere.
  • 50.
    Interrupts val p =new Promise[Int]
 p.setInterruptHandler {
 case Cancelled =>
 if (p.updateIfEmpty(Throw(..)))
 cancelUnderlyingOp()
 }
 
 val f = p flatMap …
 
 f.raise(Cancelled)
  • 51.
    Locals // Locals areequivalent to 
 // thread-locals, but with arbitrary
 // delimitation.
 
 val f, g: Future[Int]
 val l = new Local[Int]
 l() = 123
 f flatMap { i =>
 l() += i
 g map { j =>
 l() + j
 }
 }
  • 52.
  • 53.
  • 54.
    Service discovery Backed byZooKeeper Maintain convergent view of the cluster of machines ZooKeeper is notoriously difficult to deal with correctly Difficult to reason about the state of your view In addition, we have to do resource management
  • 56.
    com.twitter.util.Var trait Var[+T] {
 defflatMap[U](f: T => Var[U])
 : Var[U]
 def changes: Event[T]
 …
 }
 
 trait Event[+T] {
 def register(s: Witness[T]): Closable
 …
 }
  • 57.
    A simple example valx = Var[Int](2)
 val y = Var[Int](1)
 
 val z: Var[Int] = for {
 x0 <- x
 y0 <- y
 } yield x0 + y0
 // z() == 3
 x() = 100 // z() == 101 
 y() = 100 // z() == 200
  • 58.
    com.twitter.util.Activity sealed trait State[+T]
 caseclass Ok[T](t: T) extends State[T]
 object Pending extends State[Nothing]
 case class Failed(exc: Throwable)
 extends State[Nothing] 
 case class Activity[+T](
 run: Var[Activity.State[T]]) {
 def flatMap[U](f: T => Activity[U])
 : Activity[U] = …
 …
 }
  • 59.
    Future : val:: Activity : var
  • 60.
    A simple wrapper //Turn ZooKeeper operations into 
 // activities.
 case class Zk(underlying: ZooKeeper) {
 def globOf(pat: String)
 : Activity[Seq[String]] = …
 
 def immutableDataOf(path: String)
 : Activity[Option[Buf]] = …
 
 def collectImmutableDataOf(paths: Seq[String])
 : Activity[Seq[(String, Option[Buf])]] = {
 def get(path: String)
 : Activity[(String, Option[Buf])] =
 immutableDataOf(path).map(path -> _)
 Activity.collect(paths map get)
 }
 }
  • 61.
    Implementing serversets case classServerset(zk: Zk) {
 def dataOf(pat: String)
 : Activity[Seq[(String, Option[Buf])]] =
 zk.globOf(pat).flatMap(
 zk.collectImmutableDataOf)
 
 def parse(Seq[(String, Option[Buf])])
 : Set[SocketAddress] = ..
 
 def entriesOf(pat: String)
 : Activity[Set[SocketAddress]] =
 dataOf(pat).map(parse)
 }
  • 62.
    Broken ZK clients classVarServerSet(v: Var[ServerSet]) {
 def entriesOf(path: String)
 : Activity[Set[Entry]] = Activity(
 v.flatMap(ss =>
 ss.entriesOf(path.run))
 }
  • 63.
    Retrying ZK instance objectZk {
 // Constructor for dynamic ZK
 // instance.
 def retrying(backoff: Duration)
 : Var[Zk]
 …
 }
  • 64.
    Gluing it together valserverset = VarServerSet(
 Zk.retrying(10.seconds).map(zk =>
 new ServerSet(zk)))
 
 val set =
 serverset.entriesOf(“/foo/bar”)
 
 set.changes.observe({ addrs =>
 updateLoadBalancer(addrs)
 })
  • 65.
    Resource management trait Event[+T]{
 def register(s: Witness[T]): Closable
 …
 }
 
 trait Closable {
 def close(deadline: Time)
 : Future[Unit]
 …
 }
  • 66.
    Composable closable object Closable{
 def all(closables: Closable*)
 : Closable
 
 def sequence(closables: Closable*)
 : Closable
 
 val nop: Closable
 
 def closeOnCollect(
 closable: Closable, obj: Object)
 
 …
 }
  • 67.
    Resource management Lifetime ofobservation is entirely determined by consumer. Everything else composes on top. Anything in the middle (Var.flatMap) does not need to be concerned with resource management. If updates aren’t needed, Vars are closed.
  • 68.
  • 69.
    Software configuration Finagle comprisesmany modules (filters, services) which compose together to give the emergent behavior we want. They need to be parameterized: • systems parameters — e.g. pool sizes, concurrency limits; • module injection — e.g. stats, logging, tracing. Prior art: “cake pattern,” dependency injection frameworks (e.g. Guice)
  • 70.
    Ours is amore regular world We can take advantage of the fact that our software is highly compositional: e.g. the entire Finagle stack is expressed in terms of Service composition. Idea: make it a first class persistent data structure which can be inspected and transformed. • injecting a parameter is ‘mapping’ over this data structure; • inserting a module is a transformation
  • 71.
    com.twitter.finagle.Stack trait Stack[T] {
 deftransform(
 fn: Stack[T] => Stack[T]): Stack[T]
 
 def ++(right: Stack[T]): Stack[T]
 def +:(stk: Stackable[T]): Stack[T]
 
 def make(params: Params): T
 }
  • 72.
    Nodes case class Node[T](
 mk:(Params, Stack[T]) => Stack[T],
 next: Stack[T]
 ) extends Stack[T] {
 def make(params: Params) = 
 mk(params, next).make(params)
 }
 
 case class Leaf[T](t: T)
 extends Stack[T] {
 def make(params: Params) = t
 }
  • 73.
    Parameters // A typeclassfor parameter types
 trait Param[P] {
 def default: P
 }
 
 trait Params {
 def apply[P: Param]: P
 def contains[P: Param]: Boolean
 def +[P: Param](p: P): Params
 }
  • 74.
    Parameter definition case classPoolsize(min: Int, max: Int)
 
 implicit object Poolsize
 extends Stack.Param[Poolsize] {
 val default =
 Poolsize(0, 100)
 }
  • 75.
    Parameter use val params:Params
 
 val Poolsize(min, max) = params[Poolsize]
 …
 new Pool(min, max)
  • 76.
    Modules object FailFast {
 defmodule[Req, Rep] =
 new Stack.Module2[Stats, Timer, ServiceFactory[Req, Rep]] {
 def make(
 stats: Stats, 
 timer: Timer, 
 next: ServiceFactory[Req, Rep]) =
 new FailFastFactory(
 next, stats.scope("failfast"), timer)
 }
  • 77.
    Building val stk =new StackBuilder[ServiceFactory[Req, Rep]]
 (nilStack[Req, Rep])
 
 stk.push(ExpiringService.module)
 stk.push(FailFastFactory.module)
 stk.push(DefaultPool.module)
 stk.push(TimeoutFilter.module)
 stk.push(FailureAccrualFactory.module)
 stk.push(StatsServiceFactory.module)
 stk.push(StatsFilter.module)
 stk.push(ClientDestTracingFilter.module)
 stk.push(MonitorFilter.module)
 stk.push(ExceptionSourceFilter.module)
 
 val stack: Stack[ServiceFactory[Req, Rep]] =
 stk.result
  • 78.
    Using val params =Params.empty + 
 Stats(statsReceiver) +
 Poolsize(10, 50) +
 …
 
 val factory: ServiceFactory[..] =
 stack.make(params)
  • 79.
    Modifying val muxStack =stdStack
 .replace(Pool, ReusingPool.module)
 .replace(PrepConn, Leaser.module)
  • 80.
    Inspection scala> println(StackClient.newStack[Int, Int])
 Node(role= prepfactory, description = PrepFactory)
 Node(role = tracer, 
 description = Handle span lifecycle events to report tracing from protocols)
 Node(role = servicecreationstats, 
 description = Track statistics on service creation failures and .. latency)
 Node(role = servicetimeout, 
 description = Time out service acquisition after a given period)
 Node(role = requestdraining, description = RequestDraining)
 Node(role = loadbalancer, description = Balance requests across multiple endpoints)
 Node(role = exceptionsource, description = Source exceptions to the service name)
 Node(role = monitoring, description = Act as last-resort exception handler)
 Node(role = endpointtracing, description = Record remote address of server)
 Node(role = requeststats, description = Report request statistics)
 Node(role = factorystats, description = Report connection statistics)
 Node(role = failureaccrual, 
 description = Backoff from hosts that we cannot successfully make requests to)
 Node(role = requesttimeout, description = Apply a timeout to requests)
 Node(role = pool, description = Control client connection pool)
 Node(role = failfast, 
 description = Backoff exponentially on connection failure)
 Node(role = expiration, 
 description = Expire a service after a certain amount of idle time)
 Node(role = prepconn, description = PrepConn)
 Leaf(role = endpoint, description = endpoint)
  • 81.
  • 82.
    What have welearned?
  • 83.
    On abstraction Abstraction hasgotten a bad name because of AbstractBeanFactoryImpls. Rule of thumb: introduce abstraction when it increases precision, when it serves to clarify. Often, we can use abstraction to make things more explicit. Avoid needless indirection.
  • 84.
    Compose Composability is oneof our greatest assets — combine simple parts into a whole with emergent behavior. • Easy to reason about, test, constituent parts • Easy to combine in multiple ways • Enforces modularity Find your “orthogonal bases.” • Find abstractions which combine in non overlapping ways
  • 85.
    Decouple, separate concerns Separatesemantics from mechanism; handle problems separately (and reusably) • Leads to cleaner, simpler systems • Simpler user code — pure application logic • Flexibility in implementation Leads to a “software tools” approach to systems engineering.
  • 86.
    Keep it simple Scala,and FP languages generally, are very powerful. Use the simple features that get you a lot of mileage. When your platonic ideal API doesn’t quite fit, it’s okay to dirty it up a little, but be careful. Be mindful of the tradeoffs of static guarantees with simplicity and understandability — always remember the reader! Software engineering is in part the art of knowing when to make things worse.
  • 87.
    Functional programming Many toolsfor complexity management: Immutability, rich structures, modularity, strong typing. It’s easier to reason about correctness, but harder to reason about performance. Bridging the platonic world of functional programming to the more practical one requires us to get dirty.
  • 88.
    And have fun!Thanks. @marius https://finagle.github.io/
  • 89.
    Watch the videowith slide synchronization on InfoQ.com! http://www.infoq.com/presentations/twitter- scala