KEMBAR78
L4 types of membership functions | PDF
EE-646
Lecture-4
Types of Membership Functions
Basic Definitions
5-Sep-12 2EE-646, Lec-4
Symmetric MF
A fuzzy set is symmetric if its membership
function (MF) is symmetric about a certain
point x = c and we write
( ) ( );A Ac x c x x Xµ µ+= − ∀ ∈
5-Sep-12 3EE-646, Lec-4
Decreasing MF (Open Left)
A fuzzy set is open left or decreasing if
membership values continuously decrease
(from 1) as we increase x
lim ( ) 1 & lim ( ) 0A A
x x
x xµ µ
→−∞ →+∞
= =
5-Sep-12 4EE-646, Lec-4
Increasing MF (Open Right)
A fuzzy set is open right or increasing if
membership values continuously increase (up
to 1) as we increase x
5-Sep-12 5EE-646, Lec-4
lim ( ) 0 & lim ( ) 1A A
x x
x xµ µ
→−∞ →+∞
= =
Approximating MF (Closed Fuzzy Set)
A fuzzy set is closed if values on both ends
decrease to zero i.e.
lim ( ) lim ( ) 0A A
x x
x xµ µ
→−∞ →+∞
= =
5-Sep-12 6EE-646, Lec-4
Types of Membership Functions
• Increasing Type (Γ-function, S-function)
• Decreasing Type (L or Z-function)
• Approximation Type (Triangular function,
Trapezoidal function, Gaussian Function, Bell
function)
5-Sep-12 7EE-646, Lec-4
Γ- Function
5-Sep-12 8EE-646, Lec-4
( )
0,
: , 1,
,
x
x x
x
x
α
α β β
α
α β
β α

 <

Γ = ≥
 −
 ≤ <
−
5-Sep-12 9EE-646, Lec-4
S - Function
5-Sep-12 EE-646, Lec-4 10
( )
2
2
0,
2 ,
: , ,
1 2 ,
1,
x
x
x
S x
x
x
x
α
α
α β
γ α
α β γ
α
β γ
γ α
γ
<

 −
≤ <  −  
= 
  −
− ≤ <  − 
 ≥
5-Sep-12 11EE-646, Lec-4
By symmetry, we can reduce the no. of parameters and
we can take
2
α γ
β
+
=
µ (x)
x
L or Z - Function
5-Sep-12 12EE-646, Lec-4
( )
1,
: , ,
0,
x
x
L x x
x
α
α
α β α β
β α
β
 <

−
= ≤ <
−
 ≥
µ(x)
x
5-Sep-12 13EE-646, Lec-4
Triangular Function
5-Sep-12 EE-646, Lec-4 14
( )
( ) ( )
( ) ( )
0 ,
/ ,
or : , ,
/ ,
0 ,
x
x x
x
x x
x
α
α β α α β
α β γ
γ γ β β γ
γ
≤

− − < ≤
∆ Λ =
− − < ≤
 >
µ (x)
x
5-Sep-12 15EE-646, Lec-4
Trapezoidal or Π-Function
5-Sep-12 EE-646, Lec-4 16
( )
( ) ( )
( ) ( )
0 ,
/ ,
: , , , 1 ,
/ ,
0 ,
x
x x
x x
x x
x
α
α β α α β
α β γ δ β γ
δ δ γ γ δ
δ
≤

− − < ≤

Π= < ≤
 − − < ≤

 >
5-Sep-12 17EE-646, Lec-4
µ(x)
x
α β γ δ
Gaussian Function
• Also known as normalized distribution
function. It is defined as
• It can be used as inc, dec or approx. type
function by controlling only two parameters
5-Sep-12 18EE-646, Lec-4
( )
2
1
Gaussian : , exp
2
c
c
x x
x x σ
σ
 − 
= −  
   
Gaussian Function
5-Sep-12 EE-646, Lec-4 19
xc
x
µ(x)
Generalized Bell Function
• Crossover points are c ± a
• BW is 2a
• Flat on top
5-Sep-12 EE-646, Lec-4 20
( ) 2
1
Bell : , ,
1
b
x a b c
x c
a
=
−
+
Generalized Bell Function
5-Sep-12 EE-646, Lec-4 21
Effect of Change in parameters
5-Sep-12 22EE-646, Lec-4
Sigmoidal Function
• Used extensively in ANN theory
• Please see yourself
5-Sep-12 23EE-646, Lec-4
Today’s Task
• Find out the MATLAB commands for these
functions and generate some sample
functions
5-Sep-12 24EE-646, Lec-4

L4 types of membership functions

  • 1.
  • 2.
  • 3.
    Symmetric MF A fuzzyset is symmetric if its membership function (MF) is symmetric about a certain point x = c and we write ( ) ( );A Ac x c x x Xµ µ+= − ∀ ∈ 5-Sep-12 3EE-646, Lec-4
  • 4.
    Decreasing MF (OpenLeft) A fuzzy set is open left or decreasing if membership values continuously decrease (from 1) as we increase x lim ( ) 1 & lim ( ) 0A A x x x xµ µ →−∞ →+∞ = = 5-Sep-12 4EE-646, Lec-4
  • 5.
    Increasing MF (OpenRight) A fuzzy set is open right or increasing if membership values continuously increase (up to 1) as we increase x 5-Sep-12 5EE-646, Lec-4 lim ( ) 0 & lim ( ) 1A A x x x xµ µ →−∞ →+∞ = =
  • 6.
    Approximating MF (ClosedFuzzy Set) A fuzzy set is closed if values on both ends decrease to zero i.e. lim ( ) lim ( ) 0A A x x x xµ µ →−∞ →+∞ = = 5-Sep-12 6EE-646, Lec-4
  • 7.
    Types of MembershipFunctions • Increasing Type (Γ-function, S-function) • Decreasing Type (L or Z-function) • Approximation Type (Triangular function, Trapezoidal function, Gaussian Function, Bell function) 5-Sep-12 7EE-646, Lec-4
  • 8.
    Γ- Function 5-Sep-12 8EE-646,Lec-4 ( ) 0, : , 1, , x x x x x α α β β α α β β α   <  Γ = ≥  −  ≤ < −
  • 9.
  • 10.
    S - Function 5-Sep-12EE-646, Lec-4 10 ( ) 2 2 0, 2 , : , , 1 2 , 1, x x x S x x x x α α α β γ α α β γ α β γ γ α γ <   − ≤ <  −   =    − − ≤ <  −   ≥
  • 11.
    5-Sep-12 11EE-646, Lec-4 Bysymmetry, we can reduce the no. of parameters and we can take 2 α γ β + = µ (x) x
  • 12.
    L or Z- Function 5-Sep-12 12EE-646, Lec-4 ( ) 1, : , , 0, x x L x x x α α α β α β β α β  <  − = ≤ < −  ≥
  • 13.
  • 14.
    Triangular Function 5-Sep-12 EE-646,Lec-4 14 ( ) ( ) ( ) ( ) ( ) 0 , / , or : , , / , 0 , x x x x x x x α α β α α β α β γ γ γ β β γ γ ≤  − − < ≤ ∆ Λ = − − < ≤  >
  • 15.
  • 16.
    Trapezoidal or Π-Function 5-Sep-12EE-646, Lec-4 16 ( ) ( ) ( ) ( ) ( ) 0 , / , : , , , 1 , / , 0 , x x x x x x x x α α β α α β α β γ δ β γ δ δ γ γ δ δ ≤  − − < ≤  Π= < ≤  − − < ≤   >
  • 17.
  • 18.
    Gaussian Function • Alsoknown as normalized distribution function. It is defined as • It can be used as inc, dec or approx. type function by controlling only two parameters 5-Sep-12 18EE-646, Lec-4 ( ) 2 1 Gaussian : , exp 2 c c x x x x σ σ  −  = −      
  • 19.
  • 20.
    Generalized Bell Function •Crossover points are c ± a • BW is 2a • Flat on top 5-Sep-12 EE-646, Lec-4 20 ( ) 2 1 Bell : , , 1 b x a b c x c a = − +
  • 21.
  • 22.
    Effect of Changein parameters 5-Sep-12 22EE-646, Lec-4
  • 23.
    Sigmoidal Function • Usedextensively in ANN theory • Please see yourself 5-Sep-12 23EE-646, Lec-4
  • 24.
    Today’s Task • Findout the MATLAB commands for these functions and generate some sample functions 5-Sep-12 24EE-646, Lec-4