KEMBAR78
Apache Hadoopの新機能Ozoneの現状 | PDF
© 2017 NTT DATA Corporation
Apache Hadoopの新機能Ozoneの現状
2017/11/29
株式会社NTTデータ OSSプロフェッショナルサービス
鯵坂 明
Hadoopソースコードリーディング 第24回
© 2017 NTT DATA Corporation 2
 鯵坂 明 (Akira Ajisaka, @ajis_ka)
 NTTデータ OSSプロフェッショナルサービス
 Apache Hadoopと関わり続けて6年が経過
 Hadoopの新機能や、関連するミドルウェアの検証
 プロジェクトへの技術支援
 サポートサービス
 Apache Hadoop committer, PMC member
 HadoopのJava 9対応を実施中
自己紹介
© 2017 NTT DATA Corporation 3
Hadoop 3.0.0のリリースが目前
20142011 20132012 2015
2.2.0
2.3.0
2.4.02.0.0-alpha
2.1.0-beta
0.23.0
0.23.11(final)
NameNode Federation, YARN
NameNode HA
HDFS Snapshots
NFSv3 support
Windows
Heterogeneous storage
HDFS in-memory caching
HDFS ACLs
HDFS Rolling Upgrades
Application History Server
RM Automatic Failover
2.5.0
2.6.0
YARN Rolling Upgrades
Transparent Encryption
Archival Storage
2.7.0
Drop JDK6 support
Truncate API
2016
branch-0.23
branch-2
trunk
Hadoop2
Hadoop3
2017
2.8.0
3.0.0-alpha1 3.0.0-beta1
HDFS caller context
S3A improvement
Support Azure Data Lake
3.0.0-alpha4
2.9.0
Timeline Service v.2
YARN Web UI v2
Opportunistic Containers
YARN Federation
HDFS Router-based federation
© 2017 NTT DATA Corporation 4
 https://cwiki.apache.org/confluence/display/HADOOP/R
oadmap
今後のRoadmap
© 2017 NTT DATA Corporation 5
 S3のようなオブジェクトストレージをHadoop上で実現する
 多数のオブジェクトを格納したいという、HDFSが苦手とす
る領域をカバーする目的で開発されている
 HDFS-7240 branchで開発中
 開発が始まって2年半
 Issue数はErasure Coding (HDFS-7285) のおよそ2倍
 Roadmapによると、Hadoop 3.1.0で使える予定
 2018 1Qあたり?
Ozone: Object Store in Apache Hadoop
© 2017 NTT DATA Corporation 6
本スライドは、feature branchで開発中の機能
を紹介するものです
設定方法、コマンドなど全てにおいて、今後変更
される可能性が大いにあります
Ozoneについて詳しく紹介する前に... 注意事項
© 2017 NTT DATA Corporation 7
ボリューム、バケット、オブジェクト
Ozone
ACLACL ACL
ボリューム
バケットを複数持つ。
管理者アカウントが設定されている。
一定の容量が割り当てられている。
バケット
オブジェクトを複数持つ。
ACL を設定することができる。
名前空間はバケットで独立。
オブジェクト
キーと値の組。
キーはバケット内でユニーク。
・・・
・・・
・・・
© 2017 NTT DATA Corporation 8
各コンポーネント間の関係
Key Space Manager (KSM) Storage Container Manager (SCM)
Ozone Client
Containers
Ozone Handler
DataNode
Containers
Ozone Handler
DataNode
・・・
© 2017 NTT DATA Corporation 9
 Container
 DataNode上に保持
 Ozoneにおけるレプリケーションの単位
Ozoneを構成するコンポーネント
© 2017 NTT DATA Corporation 10
 Ozone Handler
 クライアントに対してOzoneのREST APIを提供
 各DataNode上で動作
 Key Space Manager (KSM)
 名前空間に関するクエリを処理
 オブジェクトのキーやバケット名からcontainerを解決
 Storage Container Manager (SCM)
 DataNodeとheartbeat通信し、各containerがどの
DataNode上に存在するかをトラッキングする
 障害時にcontainerのレプリケーションを実施
Ozoneを構成するコンポーネント
© 2017 NTT DATA Corporation 11
Volume作成におけるリクエストの流れ
Key Space Manager (KSM) Storage Container Manager (SCM)
Ozone Client
Containers
Ozone Handler
DataNode
Containers
Ozone Handler
DataNode
・・・
① create volume
② create volume
 Volume, Bucketに関するリクエストは同じ流れ
© 2017 NTT DATA Corporation 12
オブジェクト挿入におけるリクエストの流れ
Key Space Manager (KSM) Storage Container Manager (SCM)
Ozone Client
Containers
Ozone Handler
DataNode
Containers
Ozone Handler
DataNode
・・・
① put object
② allocate containers
③ container names
⑥ put data
④ get container locations
⑤ container locations (pipeline)
© 2017 NTT DATA Corporation 13
 DataNode -> ObjectStoreHandler ->
DistributedStorageHandler という順番で追うことで、Ozone
Handlerの全貌が掴める
 DistributedStorageHandler が クライアントからのリクエスト
を受け付ける
 Volumeの作成 -> #createVolume
 オブジェクトの挿入 -> #newKeyWriter
 ...
 デモ
ソースコードリーディング
© 2017 NTT DATA Corporation 14
1. SCMがcontainerを3つ選択
2. クライアントはcontainer Aに書き込む
3. container Aはcontainer Bに対して書き込む
(ここで書き込みが正常に完了したとみなす)
4. container Bはcontainer Cに対して書き込む
container replicationの流れ
Copysets
RAFT
コンテナ B
クライアント
書き込み完了
コンテナ A コンテナ C
© 2017 NTT DATA Corporation 15
 ランダムレプリケーションだと、データロストの確率が増える
 5000ノードのクラスタで1%のサーバが同時に故障した場合、
ほぼ確実にデータロスト
 レプリケーションをするノードの組み合わせが増えすぎること
が問題
 ノードの組み合わせ: 5000C3 = 約208億通り
 データロストする組み合わせ: 50C3 = 19600通り
 あるblockが故障する確率: 208億/19600 = 約100万分の1
 block数は億オーダー -> データロスト
 ノードの組み合わせを減らすしかない
Copysets: Reducing the Frequency of Data Loss in Cloud Storage
© 2017 NTT DATA Corporation 16
 Scatter width (以下 S) を定義
 あるノードのデータのコピーを持っているノード数がS
 9 nodeの場合、{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4,
7}, {2, 5, 8}, {3, 6, 9} という組み合わせは S=4 を満
たす
 ここで、{1, 2, 3}はあるデータが 1, 2, 3番のノードにそ
れぞれレプリケーションされることを示す
 1にあるデータは 2, 3, 4, 7の4ノードが持っている (S=4)
 Sを小さくすると組み合わせが減り、データロスト発生確率は
下がるが、小さくしすぎてもよくない
 故障時の再レプリケーションが遅くなる
Copysets: Reducing the Frequency of Data Loss in Cloud Storage
© 2017 NTT DATA Corporation 17
 Sをなるべく保ったまま、組み合わせを減らすことが重要
 以下はどちらもS=4だが、上のほうがよい
 {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8},
{3, 6, 9}
 {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7},
{6, 7, 8}, {7, 8, 9}, {8, 9, 1}, {9, 1, 2}, {1, 2, 4},
{1, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 6}, {3, 5, 6},
{4, 5, 7}
 詳細は省くが、うまく作ると組み合わせ数は O(S) になる
 完全ランダムの場合、O(SR-1
)
Copysets: Reducing the Frequency of Data Loss in Cloud Storage
© 2017 NTT DATA Corporation 18
5000台のうち50台故障時のデータロスト発生確率
© 2017 NTT DATA Corporation 19
Copysetsによって書き込み先が決まる流れ
Permutation Phase
Copyset と呼ばれるノードのまとまりを
ランダムに生成した順列に基づいて決定
Replication Phase
ランダムにひとつのノードを選択し、
copysets に従ってレプリケーションを実施
⇒ Ozone は Copysets のアルゴリズムに基づいて書き込み先のコンテナを3つ決定
© 2017 NTT DATA Corporation 20
 分散合意のプロトコル
 詳しくはこちら: http://thesecretlivesofdata.com/raft/
 Ozoneの開発メンバが中心となって、RAFTのJava実装
Apache Ratis (Incubator)を開発
 https://github.com/apache/incubator-ratis
 OzoneではレプリケーションにRatisを利用
RAFT
© 2017 NTT DATA Corporation 21
 trunkではなく、HDFS-7240 branchをビルド
 ozone-site.xmlの設定例
 Ratisはデフォルト無効 (レプリケーションされない)
Ozoneのセットアップ、設定
<configuration>
<property name="ozone.enabled" value="true" />
<property
name="ozone.container.metadata.dirs"
value="containerを格納するディレクトリ" />
<property name="ozone.scm.names" value="SCM のホスト名" />
<property name="ozone.scm.client.address" value="SCM のホスト名"/>
<property name="ozone.ksm.address" value="KSM のホスト名" />
<property name="dfs.container.ratis.enabled" value="true" />
</configuration>
© 2017 NTT DATA Corporation 22
 SCM
 KSM
Ozoneの起動
$ hdfs --daemon start scm
$ hdfs --daemon start ksm
© 2017 NTT DATA Corporation 23
 design docやAPI docがJIRAにあるが、情報が古い
 ソースコード付属のマニュアルがおすすめ
 https://github.com/apache/hadoop/blob/HDFS-
7240/hadoop-hdfs-project/hadoop-
hdfs/src/site/markdown/OzoneGettingStarted.md.v
m
困ったときは...
© 2017 NTT DATA Corporation 24
KSM Web UI (port 9874)
© 2017 NTT DATA Corporation 25
SCM Web UI (port 9876)
© 2017 NTT DATA Corporation 26
DataNode Web UI (port 9864)
© 2017 NTT DATA Corporation 27
config確認が便利になった
© 2017 NTT DATA Corporation 28
config確認が便利になった
© 2017 NTT DATA Corporation 29
 Volumeの作成
 quota設定はここで実施
 Bucketの作成
 ACLの設定はここで実施
 Keyの作成
 実データのコピー
データを配置してみる
$ hdfs oz -createVolume http://localhost:9864/volume ¥
-user centos
$ hdfs oz -createBucket http://localhost:9864/volume/bucket
$ hdfs oz -putKey http://localhost:9864/volume/bucket/key ¥
-file localkey
© 2017 NTT DATA Corporation 30
 DNにおける ozone.container.metadata.dirs 配下の構成
 datanode.id: DNのユニークIDを格納
 ratis/: RAFTのログを格納
 repository/: containerの実データを格納
 実際にデータを置いてみたところ、2個のノードにしかレプリ
ケーションされていなかった... (11/22時点)
 DNログを読む限り、Ratisでのログ共有に失敗している
 今後の修正に期待 (最新版だと動くかも)
 ちなみに2017/9時点ではRatisが入っていなかった
 状況が刻一刻と変わるので、長い目で見守るのが良さそう
データの配置状況
© 2017 NTT DATA Corporation 31
 10人規模でのonline meetingが何度か実施されている
 議事録は JIRA に記載されている
 trunkにマージすべきか延長すべきかで、まだ結論が出ていない
 Ozoneの取り組みがHDFSのスケーラビリティを解消している
ことについては同意
 NameNodeとOzoneを統合した状態でマージするのが理想だ
が、NameNodeにおいて密結合している FSNameSystem
と BlockManager のロックを分離する必要があって hard
work
 このタイミングでマージするのが落としどころでは
3.1.0でのマージに向けた議論
© 2017 NTT DATA Corporation 32
 NameNodeにおけるFSNameSystemとBlockManagerの密結合は、
HDFS append APIを実装した2010年にもたらされた
 当時は、RAFTのようなメンバの追加/削除が可能な分散合意プロトコルが
一般的ではなかったため、中央集権的に実装された
 Ozoneのマージを機に、7年続いた密結合が取り崩されることに期待が膨ら
む
 私も開発に参加して、取り組みを加速させたい
最後に
© 2017 NTT DATA Corporation 33
https://issues.apache.org/jira/secure/attachment/12895963/HDFS%20Scalability%20and%20Ozone.pdf
© 2017 NTT DATA Corporation 34
 Copysets: Reducing the Frequency of Data Loss in
Cloud Storage
 https://www.usenix.org/node/174509
References
© 2017 NTT DATA Corporation
本資料中に記載されている会社名、商品名、ロゴは、各社の商標または登録商標です。

Apache Hadoopの新機能Ozoneの現状

  • 1.
    © 2017 NTTDATA Corporation Apache Hadoopの新機能Ozoneの現状 2017/11/29 株式会社NTTデータ OSSプロフェッショナルサービス 鯵坂 明 Hadoopソースコードリーディング 第24回
  • 2.
    © 2017 NTTDATA Corporation 2  鯵坂 明 (Akira Ajisaka, @ajis_ka)  NTTデータ OSSプロフェッショナルサービス  Apache Hadoopと関わり続けて6年が経過  Hadoopの新機能や、関連するミドルウェアの検証  プロジェクトへの技術支援  サポートサービス  Apache Hadoop committer, PMC member  HadoopのJava 9対応を実施中 自己紹介
  • 3.
    © 2017 NTTDATA Corporation 3 Hadoop 3.0.0のリリースが目前 20142011 20132012 2015 2.2.0 2.3.0 2.4.02.0.0-alpha 2.1.0-beta 0.23.0 0.23.11(final) NameNode Federation, YARN NameNode HA HDFS Snapshots NFSv3 support Windows Heterogeneous storage HDFS in-memory caching HDFS ACLs HDFS Rolling Upgrades Application History Server RM Automatic Failover 2.5.0 2.6.0 YARN Rolling Upgrades Transparent Encryption Archival Storage 2.7.0 Drop JDK6 support Truncate API 2016 branch-0.23 branch-2 trunk Hadoop2 Hadoop3 2017 2.8.0 3.0.0-alpha1 3.0.0-beta1 HDFS caller context S3A improvement Support Azure Data Lake 3.0.0-alpha4 2.9.0 Timeline Service v.2 YARN Web UI v2 Opportunistic Containers YARN Federation HDFS Router-based federation
  • 4.
    © 2017 NTTDATA Corporation 4  https://cwiki.apache.org/confluence/display/HADOOP/R oadmap 今後のRoadmap
  • 5.
    © 2017 NTTDATA Corporation 5  S3のようなオブジェクトストレージをHadoop上で実現する  多数のオブジェクトを格納したいという、HDFSが苦手とす る領域をカバーする目的で開発されている  HDFS-7240 branchで開発中  開発が始まって2年半  Issue数はErasure Coding (HDFS-7285) のおよそ2倍  Roadmapによると、Hadoop 3.1.0で使える予定  2018 1Qあたり? Ozone: Object Store in Apache Hadoop
  • 6.
    © 2017 NTTDATA Corporation 6 本スライドは、feature branchで開発中の機能 を紹介するものです 設定方法、コマンドなど全てにおいて、今後変更 される可能性が大いにあります Ozoneについて詳しく紹介する前に... 注意事項
  • 7.
    © 2017 NTTDATA Corporation 7 ボリューム、バケット、オブジェクト Ozone ACLACL ACL ボリューム バケットを複数持つ。 管理者アカウントが設定されている。 一定の容量が割り当てられている。 バケット オブジェクトを複数持つ。 ACL を設定することができる。 名前空間はバケットで独立。 オブジェクト キーと値の組。 キーはバケット内でユニーク。 ・・・ ・・・ ・・・
  • 8.
    © 2017 NTTDATA Corporation 8 各コンポーネント間の関係 Key Space Manager (KSM) Storage Container Manager (SCM) Ozone Client Containers Ozone Handler DataNode Containers Ozone Handler DataNode ・・・
  • 9.
    © 2017 NTTDATA Corporation 9  Container  DataNode上に保持  Ozoneにおけるレプリケーションの単位 Ozoneを構成するコンポーネント
  • 10.
    © 2017 NTTDATA Corporation 10  Ozone Handler  クライアントに対してOzoneのREST APIを提供  各DataNode上で動作  Key Space Manager (KSM)  名前空間に関するクエリを処理  オブジェクトのキーやバケット名からcontainerを解決  Storage Container Manager (SCM)  DataNodeとheartbeat通信し、各containerがどの DataNode上に存在するかをトラッキングする  障害時にcontainerのレプリケーションを実施 Ozoneを構成するコンポーネント
  • 11.
    © 2017 NTTDATA Corporation 11 Volume作成におけるリクエストの流れ Key Space Manager (KSM) Storage Container Manager (SCM) Ozone Client Containers Ozone Handler DataNode Containers Ozone Handler DataNode ・・・ ① create volume ② create volume  Volume, Bucketに関するリクエストは同じ流れ
  • 12.
    © 2017 NTTDATA Corporation 12 オブジェクト挿入におけるリクエストの流れ Key Space Manager (KSM) Storage Container Manager (SCM) Ozone Client Containers Ozone Handler DataNode Containers Ozone Handler DataNode ・・・ ① put object ② allocate containers ③ container names ⑥ put data ④ get container locations ⑤ container locations (pipeline)
  • 13.
    © 2017 NTTDATA Corporation 13  DataNode -> ObjectStoreHandler -> DistributedStorageHandler という順番で追うことで、Ozone Handlerの全貌が掴める  DistributedStorageHandler が クライアントからのリクエスト を受け付ける  Volumeの作成 -> #createVolume  オブジェクトの挿入 -> #newKeyWriter  ...  デモ ソースコードリーディング
  • 14.
    © 2017 NTTDATA Corporation 14 1. SCMがcontainerを3つ選択 2. クライアントはcontainer Aに書き込む 3. container Aはcontainer Bに対して書き込む (ここで書き込みが正常に完了したとみなす) 4. container Bはcontainer Cに対して書き込む container replicationの流れ Copysets RAFT コンテナ B クライアント 書き込み完了 コンテナ A コンテナ C
  • 15.
    © 2017 NTTDATA Corporation 15  ランダムレプリケーションだと、データロストの確率が増える  5000ノードのクラスタで1%のサーバが同時に故障した場合、 ほぼ確実にデータロスト  レプリケーションをするノードの組み合わせが増えすぎること が問題  ノードの組み合わせ: 5000C3 = 約208億通り  データロストする組み合わせ: 50C3 = 19600通り  あるblockが故障する確率: 208億/19600 = 約100万分の1  block数は億オーダー -> データロスト  ノードの組み合わせを減らすしかない Copysets: Reducing the Frequency of Data Loss in Cloud Storage
  • 16.
    © 2017 NTTDATA Corporation 16  Scatter width (以下 S) を定義  あるノードのデータのコピーを持っているノード数がS  9 nodeの場合、{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9} という組み合わせは S=4 を満 たす  ここで、{1, 2, 3}はあるデータが 1, 2, 3番のノードにそ れぞれレプリケーションされることを示す  1にあるデータは 2, 3, 4, 7の4ノードが持っている (S=4)  Sを小さくすると組み合わせが減り、データロスト発生確率は 下がるが、小さくしすぎてもよくない  故障時の再レプリケーションが遅くなる Copysets: Reducing the Frequency of Data Loss in Cloud Storage
  • 17.
    © 2017 NTTDATA Corporation 17  Sをなるべく保ったまま、組み合わせを減らすことが重要  以下はどちらもS=4だが、上のほうがよい  {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9}  {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7}, {6, 7, 8}, {7, 8, 9}, {8, 9, 1}, {9, 1, 2}, {1, 2, 4}, {1, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 7}  詳細は省くが、うまく作ると組み合わせ数は O(S) になる  完全ランダムの場合、O(SR-1 ) Copysets: Reducing the Frequency of Data Loss in Cloud Storage
  • 18.
    © 2017 NTTDATA Corporation 18 5000台のうち50台故障時のデータロスト発生確率
  • 19.
    © 2017 NTTDATA Corporation 19 Copysetsによって書き込み先が決まる流れ Permutation Phase Copyset と呼ばれるノードのまとまりを ランダムに生成した順列に基づいて決定 Replication Phase ランダムにひとつのノードを選択し、 copysets に従ってレプリケーションを実施 ⇒ Ozone は Copysets のアルゴリズムに基づいて書き込み先のコンテナを3つ決定
  • 20.
    © 2017 NTTDATA Corporation 20  分散合意のプロトコル  詳しくはこちら: http://thesecretlivesofdata.com/raft/  Ozoneの開発メンバが中心となって、RAFTのJava実装 Apache Ratis (Incubator)を開発  https://github.com/apache/incubator-ratis  OzoneではレプリケーションにRatisを利用 RAFT
  • 21.
    © 2017 NTTDATA Corporation 21  trunkではなく、HDFS-7240 branchをビルド  ozone-site.xmlの設定例  Ratisはデフォルト無効 (レプリケーションされない) Ozoneのセットアップ、設定 <configuration> <property name="ozone.enabled" value="true" /> <property name="ozone.container.metadata.dirs" value="containerを格納するディレクトリ" /> <property name="ozone.scm.names" value="SCM のホスト名" /> <property name="ozone.scm.client.address" value="SCM のホスト名"/> <property name="ozone.ksm.address" value="KSM のホスト名" /> <property name="dfs.container.ratis.enabled" value="true" /> </configuration>
  • 22.
    © 2017 NTTDATA Corporation 22  SCM  KSM Ozoneの起動 $ hdfs --daemon start scm $ hdfs --daemon start ksm
  • 23.
    © 2017 NTTDATA Corporation 23  design docやAPI docがJIRAにあるが、情報が古い  ソースコード付属のマニュアルがおすすめ  https://github.com/apache/hadoop/blob/HDFS- 7240/hadoop-hdfs-project/hadoop- hdfs/src/site/markdown/OzoneGettingStarted.md.v m 困ったときは...
  • 24.
    © 2017 NTTDATA Corporation 24 KSM Web UI (port 9874)
  • 25.
    © 2017 NTTDATA Corporation 25 SCM Web UI (port 9876)
  • 26.
    © 2017 NTTDATA Corporation 26 DataNode Web UI (port 9864)
  • 27.
    © 2017 NTTDATA Corporation 27 config確認が便利になった
  • 28.
    © 2017 NTTDATA Corporation 28 config確認が便利になった
  • 29.
    © 2017 NTTDATA Corporation 29  Volumeの作成  quota設定はここで実施  Bucketの作成  ACLの設定はここで実施  Keyの作成  実データのコピー データを配置してみる $ hdfs oz -createVolume http://localhost:9864/volume ¥ -user centos $ hdfs oz -createBucket http://localhost:9864/volume/bucket $ hdfs oz -putKey http://localhost:9864/volume/bucket/key ¥ -file localkey
  • 30.
    © 2017 NTTDATA Corporation 30  DNにおける ozone.container.metadata.dirs 配下の構成  datanode.id: DNのユニークIDを格納  ratis/: RAFTのログを格納  repository/: containerの実データを格納  実際にデータを置いてみたところ、2個のノードにしかレプリ ケーションされていなかった... (11/22時点)  DNログを読む限り、Ratisでのログ共有に失敗している  今後の修正に期待 (最新版だと動くかも)  ちなみに2017/9時点ではRatisが入っていなかった  状況が刻一刻と変わるので、長い目で見守るのが良さそう データの配置状況
  • 31.
    © 2017 NTTDATA Corporation 31  10人規模でのonline meetingが何度か実施されている  議事録は JIRA に記載されている  trunkにマージすべきか延長すべきかで、まだ結論が出ていない  Ozoneの取り組みがHDFSのスケーラビリティを解消している ことについては同意  NameNodeとOzoneを統合した状態でマージするのが理想だ が、NameNodeにおいて密結合している FSNameSystem と BlockManager のロックを分離する必要があって hard work  このタイミングでマージするのが落としどころでは 3.1.0でのマージに向けた議論
  • 32.
    © 2017 NTTDATA Corporation 32  NameNodeにおけるFSNameSystemとBlockManagerの密結合は、 HDFS append APIを実装した2010年にもたらされた  当時は、RAFTのようなメンバの追加/削除が可能な分散合意プロトコルが 一般的ではなかったため、中央集権的に実装された  Ozoneのマージを機に、7年続いた密結合が取り崩されることに期待が膨ら む  私も開発に参加して、取り組みを加速させたい 最後に
  • 33.
    © 2017 NTTDATA Corporation 33 https://issues.apache.org/jira/secure/attachment/12895963/HDFS%20Scalability%20and%20Ozone.pdf
  • 34.
    © 2017 NTTDATA Corporation 34  Copysets: Reducing the Frequency of Data Loss in Cloud Storage  https://www.usenix.org/node/174509 References
  • 35.
    © 2017 NTTDATA Corporation 本資料中に記載されている会社名、商品名、ロゴは、各社の商標または登録商標です。