KEMBAR78
TENSOR DECOMPOSITION WITH PYTHON | PDF
TENSOR DECOMPOSITION WITH PYTHON
LEARNING STRUCTURES FROM MULTIDIMENSIONAL DATA
ANDRÉ PANISSON
@apanisson
ISI Foundation, Torino & New York City
WHAT IS DATA DECOMPOSITION?
DECOMPOSITION == FACTORIZATION
Representation a dataset as a sum of (interpretable) parts
▸ Represent data as the combination of many components / factors
▸ Dimensionality reduction: each new dimension

represents a latent variable:
▸ text corpus => topics
▸ shopping behaviour => segments (user segmentation)
▸ social network => groups, communities
▸ psychology surveys => personality traits
▸ electronic medical records => health conditions
▸ chemical solutions => chemical ingredients
X
W
H
DATA DECOMPOSITION
▸ Decomposition of data represented in two dimensions:

MATRIX FACTORIZATION
▸ text: documents X terms
▸ surveys: subjects X questions
▸ electronic medical records: patients X diagnosis/drugs
▸ Decomposition of data represented in more dimensions:

TENSOR FACTORIZATION
▸ social networks: user X user (adjacency matrix) X time
▸ text: authors X terms X time
▸ spectroscopy:

solution sample X wavelength (emission) X wavelength (excitation)
WHY TENSOR FACTORIZATION + PYTHON?
▸ Matrix Factorization is already used in many fields
▸ Tensor Factorization is becoming very popular

for multiway data analysis
▸ TF is very useful to explore time-varying network data
▸ But still, the most used tool is Matlab
▸ There’s room for improvement in 

the Python libraries for TF
MATRIX DECOMPOSITION
FACTOR ANALYSIS
Spearman ~1900
X≈WH
Xtests x subjects ≈ Wtests x intelligences Hintelligences x subjects
Spearman, 1927: The abilities of man.
≈
tests
subjects subjects
tests
Int.
Int.
X W
H
TOPIC MODELING / LATENT SEMANTIC ANALYSIS
Blei, David M. "Probabilistic topic models." Communications of the ACM 55.4 (2012): 77-84.
. , ,
. , ,
. . .
gene
dna
genetic
life
evolve
organism
brai n
neuron
nerve
data
number
computer
. , ,
Topics Documents
Topic proportions and
assignments
0.04
0.02
0.01
0.04
0.02
0.01
0.02
0.01
0.01
0.02
0.02
0.01
data
number
computer
. , ,
0.02
0.02
0.01
TOPIC MODELING / LATENT SEMANTIC ANALYSIS
X≈WH
Non-negative Matrix Factorization (NMF):
(~1970 Lawson, ~1995 Paatero, ~2000 Lee & Seung)
2005 Gaussier et al. "Relation between PLSA and NMF and implications."
arg min
W,H
kX WHk s. t. W, H 0
≈
documents
terms terms
documents
topic
topic
Sparse

Matrix! W
H
NON-NEGATIVE MATRIX FACTORIZATION (NMF)
NMF gives Part based representation

(Lee & Seung – Nature 1999)
NMF
=×
Original
PCA
×
=
NMF is similar to Spectral Clustering

(Ding et al. - SDM 2005)
arg min
W,H
kX WHk s. t. W, H 0
W W •
XHT
WHHT
H H •
WT
X
WTWH
NMF brings interpretation!
from sklearn import datasets, decomposition, utils
digits = datasets.fetch_mldata('MNIST original')
A = utils.shuffle(digits.data)
nmf = decomposition.NMF(n_components=20)
W = nmf.fit_transform(A)
H = nmf.components_
plt.rc("image", cmap="binary")
plt.figure(figsize=(8,4))
for i in range(20):
plt.subplot(2,5,i+1)
plt.imshow(H[i].reshape(28,28))
plt.xticks(())
plt.yticks(())
plt.tight_layout()
TENSORS AND TENSOR DECOMPOSITION
BEYOND MATRICES: HIGH DIMENSIONAL DATASETS
Cichocki et al. Nonnegative Matrix and Tensor Factorizations
Environmental analysis
▸ Measurement as a function of (Location, Time, Variable)
Sensory analysis
▸ Score as a function of (Wine sample, Judge, Attribute)
Process analysis
▸ Measurement as a function of (Batch, Variable, time)
Spectroscopy
▸ Intensity as a function of (Wavelength, Retention, Sample, Time,
Location, …)
…
MULTIWAY DATA ANALYSIS
DIGITAL TRACES FROM SENSORS AND IOT
USER
POSITION
TIME
…
TENSORS
WHAT IS A TENSOR?
A tensor is a multidimensional array

E.g., three-way tensor:
Mode-1
Mode-2
Mode-3
651a
FIBERS AND SLICES
Cichocki et al. Nonnegative Matrix and Tensor Factorizations
Column (Mode-1) Fibers Row (Mode-2) Fibers Tube (Mode-3) Fibers
Horizontal Slices Lateral Slices Frontal Slices
A[:, 4, 1] A[1, :, 4] A[1, 3, :]
A[1, :, :] A[:, :, 1]A[:, 1, :]
TENSOR UNFOLDINGS: MATRICIZATION AND VECTORIZATION
Matricization: convert a tensor to a matrix
Vectorization: convert a tensor to a vector
>>> T = np.arange(0, 24).reshape((3, 4, 2))
>>> T
array([[[ 0, 1],
[ 2, 3],
[ 4, 5],
[ 6, 7]],
[[ 8, 9],
[10, 11],
[12, 13],
[14, 15]],
[[16, 17],
[18, 19],
[20, 21],
[22, 23]]])
OK for dense tensors: use a combination 

of transpose() and reshape()
Not simple for sparse datasets (e.g.: <authors, terms, time>)
for j in range(T.shape[1]):
for i in range(T.shape[2]):
print T[:, i, j]
[ 0 8 16]
[ 2 10 18]
[ 4 12 20]
[ 6 14 22]
[ 1 9 17]
[ 3 11 19]
[ 5 13 21]
[ 7 15 23]
# supposing the existence of unfold
>>> T.unfold(0)
array([[ 0, 2, 4, 6, 1, 3, 5, 7],
[ 8, 10, 12, 14, 9, 11, 13, 15],
[16, 18, 20, 22, 17, 19, 21, 23]])
>>> T.unfold(1)
array([[ 0, 8, 16, 1, 9, 17],
[ 2, 10, 18, 3, 11, 19],
[ 4, 12, 20, 5, 13, 21],
[ 6, 14, 22, 7, 15, 23]])
>>> T.unfold(2)
array([[ 0, 8, 16, 2, 10, 18, 4, 12, 20, 6, 14, 22],
[ 1, 9, 17, 3, 11, 19, 5, 13, 21, 7, 15, 23]])
RANK-1 TENSOR
The outer product of N vectors results in a rank-1 tensor
array([[[ 1., 2.],
[ 2., 4.],
[ 3., 6.],
[ 4., 8.]],
[[ 2., 4.],
[ 4., 8.],
[ 6., 12.],
[ 8., 16.]],
[[ 3., 6.],
[ 6., 12.],
[ 9., 18.],
[ 12., 24.]]])
a = np.array([1, 2, 3])
b = np.array([1, 2, 3, 4])
c = np.array([1, 2])
T = np.zeros((a.shape[0], b.shape[0], c.shape[0]))
for i in range(a.shape[0]):
for j in range(b.shape[0]):
for k in range(c.shape[0]):
T[i, j, k] = a[i] * b[j] * c[k]
T = a(1)
· · · a(N)
=
a
c
b
Ti,j,k = a
(1)
i a
(2)
j a
(3)
k
TENSOR RANK
▸ Every tensor can be written as a sum of rank-1 tensors
=
a1 aJ
c1 cJ
b1 bJ
+ +
▸ Tensor rank: smallest number of rank-1 tensors 

that can generate it by summing up
X ⇡
RX
r=1
a(1)
r a(2)
r · · · a(N)
r ⌘ JA(1)
, A(2)
, · · · , A(N)
K
T ⇡
RX
r=1
ar br cr ⌘ JA, B, CK
array([[[ 61., 82.],
[ 74., 100.],
[ 87., 118.],
[ 100., 136.]],
[[ 77., 104.],
[ 94., 128.],
[ 111., 152.],
[ 128., 176.]],
[[ 93., 126.],
[ 114., 156.],
[ 135., 186.],
[ 156., 216.]]])
A = np.array([[1, 2, 3],
[4, 5, 6]]).T
B = np.array([[1, 2, 3, 4],
[5, 6, 7, 8]]).T
C = np.array([[1, 2],
[3, 4]]).T
T = np.zeros((A.shape[0], B.shape[0], C.shape[0]))
for i in range(A.shape[0]):
for j in range(B.shape[0]):
for k in range(C.shape[0]):
for r in range(A.shape[1]):
T[i, j, k] += A[i, r] * B[j, r] * C[k, r]
T = np.einsum('ir,jr,kr->ijk', A, B, C)
: Kruskal Tensorbr cr ⌘ JA, B, CK
TENSOR FACTORIZATION
▸ CANDECOMP/PARAFAC factorization (CP)
▸ extensions of SVD / PCA / NMF to tensors
NON-NEGATIVE TENSOR FACTORIZATION
▸ Decompose a non-negative tensor to 

a sum of R non-negative rank-1 tensors
arg min
A,B,C
kT JA, B, CKk
with JA, B, CK ⌘
RX
r=1
ar br cr
subject to A 0, B 0, C 0
TENSOR FACTORIZATION: HOW TO
Alternating Least Squares(ALS):

Fix all but one factor matrix to which LS is applied
min
A 0
kT(1) A(C B)T
k
min
B 0
kT(2) B(C A)T
k
min
C 0
kT(3) C(B A)T
k
denotes the Khatri-Rao product, which is a
column-wise Kronecker product, i.e., C B = [c1 ⌦ b1, c2 ⌦ b2, . . . , cr ⌦ br]
T(1) = ˆA(ˆC ˆB)T
T(2) = ˆB(ˆC ˆA)T
T(3) = ˆC(ˆB ˆA)T
Unfolded Tensor

on the kth mode
F = [zeros(n, r), zeros(m, r), zeros(o, r)]
FF_init = np.rand((len(F), r, r))
def iter_solver(T, F, FF_init):
# Update each factor
for k in range(len(F)):
# Compute the inner-product matrix
FF = ones((r, r))
for i in range(k) + range(k+1, len(F)):
FF = FF * FF_init[i]
# unfolded tensor times Khatri-Rao product
XF = T.uttkrp(F, k)
F[k] = F[k]*XF/(F[k].dot(FF))
# F[k] = nnls(FF, XF.T).T
FF_init[k] = (F[k].T.dot(F[k]))
return F, FF_init
min
A 0
kT(1) A(C B)T
k
min
B 0
kT(2) B(C A)T
k
min
C 0
kT(3) C(B A)T
k
arg min
W,H
kX WHk s.
J. Kim and H. Park. Fast Nonnegative Tensor Factorization with an Active-set-like Method.

In High-Performance Scientific Computing: Algorithms and Applications, Springer, 2012, pp. 311-326.
W W •
XHT
WHHT
T(1)(C B)
HOW TO INTERPRET: USER X TERM X TIME
X is a 3-way tensor in which
xnmt is 1 if the term m was used by user n at interval t,
0 otherwise
ANxK
is the the association of each user n to a factor k
BMxK
is the association of each term m to a factor k
CTxK
shows the time activity of each factor
users
users
C
=
X
A
B
(N×M×T)
(T×K)
(N×K)
(M×K)
terms
tim
e
tim
e
terms
factors
http://www.datainterfaces.org/2013/06/twitter-topic-explorer/
TOOLS FOR TENSOR DECOMPOSITION
TOOLS FOR TENSOR FACTORIZATION
TOOLS: THE PYTHON WORLD
NumPy SciPy
Scikit-Tensor (under development):
github.com/mnick/scikit-tensor
NTF: gist.github.com/panisson/7719245
TENSOR DECOMPOSITION OF WEARABLE SENSOR DATA
direct proximity
sensing
primary
school
Lyon, France
primary school
231 students
10 teachers
TENSORS
0 1 0
1 0 1
0 1 0
FROM TEMPORAL GRAPHS TO 3-WAY TENSORS
temporal network
tensorial
representation
tensor factorization
factors
communities temporal activity
factorization
quality
A,B C
tuning the complexity
of the model
nodes
communities
1B
5A
3B
5B
2B
2A
3A
4A
1A
4B
50
60
70
80
35
40
45
50
35
40
45
50
50
60
0
10
20
30
4040
0
5
10
15
20
25
30
50
60
70
80
35
40
45
50
40
45
50
50
60
0
10
20
30
4040
0
5
10
15
20
25
30
50
60
70
80
35
40
45
50
50 60
0
10
20
30
4040
0
5
10
15
20
25
30
structures in temporal networks
components
nodes
time
time interval
quality metrics
component
L. Gauvin et al., PLoS ONE 9(1), e86028 (2014)
1B
5A
3B
5B
2B
2A
3A
4A
1A
4B
TENSOR DECOMPOSITION OF SCHOOL NETWORK
https://github.com/panisson/ntf-school
Laetitia Gauvin Ciro Cattuto Anna Sapienza
.fit().predict()
( )
@apanisson
panisson@gmail.com
thank you

TENSOR DECOMPOSITION WITH PYTHON

  • 1.
    TENSOR DECOMPOSITION WITHPYTHON LEARNING STRUCTURES FROM MULTIDIMENSIONAL DATA ANDRÉ PANISSON @apanisson ISI Foundation, Torino & New York City
  • 2.
    WHAT IS DATADECOMPOSITION? DECOMPOSITION == FACTORIZATION Representation a dataset as a sum of (interpretable) parts ▸ Represent data as the combination of many components / factors ▸ Dimensionality reduction: each new dimension
 represents a latent variable: ▸ text corpus => topics ▸ shopping behaviour => segments (user segmentation) ▸ social network => groups, communities ▸ psychology surveys => personality traits ▸ electronic medical records => health conditions ▸ chemical solutions => chemical ingredients
  • 3.
  • 4.
    DATA DECOMPOSITION ▸ Decompositionof data represented in two dimensions:
 MATRIX FACTORIZATION ▸ text: documents X terms ▸ surveys: subjects X questions ▸ electronic medical records: patients X diagnosis/drugs ▸ Decomposition of data represented in more dimensions:
 TENSOR FACTORIZATION ▸ social networks: user X user (adjacency matrix) X time ▸ text: authors X terms X time ▸ spectroscopy:
 solution sample X wavelength (emission) X wavelength (excitation)
  • 5.
    WHY TENSOR FACTORIZATION+ PYTHON? ▸ Matrix Factorization is already used in many fields ▸ Tensor Factorization is becoming very popular
 for multiway data analysis ▸ TF is very useful to explore time-varying network data ▸ But still, the most used tool is Matlab ▸ There’s room for improvement in 
 the Python libraries for TF
  • 6.
  • 7.
    FACTOR ANALYSIS Spearman ~1900 X≈WH Xtestsx subjects ≈ Wtests x intelligences Hintelligences x subjects Spearman, 1927: The abilities of man. ≈ tests subjects subjects tests Int. Int. X W H
  • 8.
    TOPIC MODELING /LATENT SEMANTIC ANALYSIS Blei, David M. "Probabilistic topic models." Communications of the ACM 55.4 (2012): 77-84. . , , . , , . . . gene dna genetic life evolve organism brai n neuron nerve data number computer . , , Topics Documents Topic proportions and assignments 0.04 0.02 0.01 0.04 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.01 data number computer . , , 0.02 0.02 0.01
  • 9.
    TOPIC MODELING /LATENT SEMANTIC ANALYSIS X≈WH Non-negative Matrix Factorization (NMF): (~1970 Lawson, ~1995 Paatero, ~2000 Lee & Seung) 2005 Gaussier et al. "Relation between PLSA and NMF and implications." arg min W,H kX WHk s. t. W, H 0 ≈ documents terms terms documents topic topic Sparse
 Matrix! W H
  • 10.
    NON-NEGATIVE MATRIX FACTORIZATION(NMF) NMF gives Part based representation
 (Lee & Seung – Nature 1999) NMF =× Original PCA × = NMF is similar to Spectral Clustering
 (Ding et al. - SDM 2005) arg min W,H kX WHk s. t. W, H 0 W W • XHT WHHT H H • WT X WTWH NMF brings interpretation!
  • 11.
    from sklearn importdatasets, decomposition, utils digits = datasets.fetch_mldata('MNIST original') A = utils.shuffle(digits.data) nmf = decomposition.NMF(n_components=20) W = nmf.fit_transform(A) H = nmf.components_ plt.rc("image", cmap="binary") plt.figure(figsize=(8,4)) for i in range(20): plt.subplot(2,5,i+1) plt.imshow(H[i].reshape(28,28)) plt.xticks(()) plt.yticks(()) plt.tight_layout()
  • 12.
    TENSORS AND TENSORDECOMPOSITION
  • 13.
    BEYOND MATRICES: HIGHDIMENSIONAL DATASETS Cichocki et al. Nonnegative Matrix and Tensor Factorizations Environmental analysis ▸ Measurement as a function of (Location, Time, Variable) Sensory analysis ▸ Score as a function of (Wine sample, Judge, Attribute) Process analysis ▸ Measurement as a function of (Batch, Variable, time) Spectroscopy ▸ Intensity as a function of (Wavelength, Retention, Sample, Time, Location, …) … MULTIWAY DATA ANALYSIS
  • 14.
    DIGITAL TRACES FROMSENSORS AND IOT USER POSITION TIME …
  • 15.
  • 16.
    WHAT IS ATENSOR? A tensor is a multidimensional array
 E.g., three-way tensor: Mode-1 Mode-2 Mode-3 651a
  • 18.
    FIBERS AND SLICES Cichockiet al. Nonnegative Matrix and Tensor Factorizations Column (Mode-1) Fibers Row (Mode-2) Fibers Tube (Mode-3) Fibers Horizontal Slices Lateral Slices Frontal Slices A[:, 4, 1] A[1, :, 4] A[1, 3, :] A[1, :, :] A[:, :, 1]A[:, 1, :]
  • 19.
    TENSOR UNFOLDINGS: MATRICIZATIONAND VECTORIZATION Matricization: convert a tensor to a matrix Vectorization: convert a tensor to a vector
  • 20.
    >>> T =np.arange(0, 24).reshape((3, 4, 2)) >>> T array([[[ 0, 1], [ 2, 3], [ 4, 5], [ 6, 7]], [[ 8, 9], [10, 11], [12, 13], [14, 15]], [[16, 17], [18, 19], [20, 21], [22, 23]]]) OK for dense tensors: use a combination 
 of transpose() and reshape() Not simple for sparse datasets (e.g.: <authors, terms, time>) for j in range(T.shape[1]): for i in range(T.shape[2]): print T[:, i, j] [ 0 8 16] [ 2 10 18] [ 4 12 20] [ 6 14 22] [ 1 9 17] [ 3 11 19] [ 5 13 21] [ 7 15 23] # supposing the existence of unfold >>> T.unfold(0) array([[ 0, 2, 4, 6, 1, 3, 5, 7], [ 8, 10, 12, 14, 9, 11, 13, 15], [16, 18, 20, 22, 17, 19, 21, 23]]) >>> T.unfold(1) array([[ 0, 8, 16, 1, 9, 17], [ 2, 10, 18, 3, 11, 19], [ 4, 12, 20, 5, 13, 21], [ 6, 14, 22, 7, 15, 23]]) >>> T.unfold(2) array([[ 0, 8, 16, 2, 10, 18, 4, 12, 20, 6, 14, 22], [ 1, 9, 17, 3, 11, 19, 5, 13, 21, 7, 15, 23]])
  • 21.
    RANK-1 TENSOR The outerproduct of N vectors results in a rank-1 tensor array([[[ 1., 2.], [ 2., 4.], [ 3., 6.], [ 4., 8.]], [[ 2., 4.], [ 4., 8.], [ 6., 12.], [ 8., 16.]], [[ 3., 6.], [ 6., 12.], [ 9., 18.], [ 12., 24.]]]) a = np.array([1, 2, 3]) b = np.array([1, 2, 3, 4]) c = np.array([1, 2]) T = np.zeros((a.shape[0], b.shape[0], c.shape[0])) for i in range(a.shape[0]): for j in range(b.shape[0]): for k in range(c.shape[0]): T[i, j, k] = a[i] * b[j] * c[k] T = a(1) · · · a(N) = a c b Ti,j,k = a (1) i a (2) j a (3) k
  • 22.
    TENSOR RANK ▸ Everytensor can be written as a sum of rank-1 tensors = a1 aJ c1 cJ b1 bJ + + ▸ Tensor rank: smallest number of rank-1 tensors 
 that can generate it by summing up X ⇡ RX r=1 a(1) r a(2) r · · · a(N) r ⌘ JA(1) , A(2) , · · · , A(N) K T ⇡ RX r=1 ar br cr ⌘ JA, B, CK
  • 23.
    array([[[ 61., 82.], [74., 100.], [ 87., 118.], [ 100., 136.]], [[ 77., 104.], [ 94., 128.], [ 111., 152.], [ 128., 176.]], [[ 93., 126.], [ 114., 156.], [ 135., 186.], [ 156., 216.]]]) A = np.array([[1, 2, 3], [4, 5, 6]]).T B = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).T C = np.array([[1, 2], [3, 4]]).T T = np.zeros((A.shape[0], B.shape[0], C.shape[0])) for i in range(A.shape[0]): for j in range(B.shape[0]): for k in range(C.shape[0]): for r in range(A.shape[1]): T[i, j, k] += A[i, r] * B[j, r] * C[k, r] T = np.einsum('ir,jr,kr->ijk', A, B, C) : Kruskal Tensorbr cr ⌘ JA, B, CK
  • 24.
    TENSOR FACTORIZATION ▸ CANDECOMP/PARAFACfactorization (CP) ▸ extensions of SVD / PCA / NMF to tensors NON-NEGATIVE TENSOR FACTORIZATION ▸ Decompose a non-negative tensor to 
 a sum of R non-negative rank-1 tensors arg min A,B,C kT JA, B, CKk with JA, B, CK ⌘ RX r=1 ar br cr subject to A 0, B 0, C 0
  • 25.
    TENSOR FACTORIZATION: HOWTO Alternating Least Squares(ALS):
 Fix all but one factor matrix to which LS is applied min A 0 kT(1) A(C B)T k min B 0 kT(2) B(C A)T k min C 0 kT(3) C(B A)T k denotes the Khatri-Rao product, which is a column-wise Kronecker product, i.e., C B = [c1 ⌦ b1, c2 ⌦ b2, . . . , cr ⌦ br] T(1) = ˆA(ˆC ˆB)T T(2) = ˆB(ˆC ˆA)T T(3) = ˆC(ˆB ˆA)T Unfolded Tensor
 on the kth mode
  • 26.
    F = [zeros(n,r), zeros(m, r), zeros(o, r)] FF_init = np.rand((len(F), r, r)) def iter_solver(T, F, FF_init): # Update each factor for k in range(len(F)): # Compute the inner-product matrix FF = ones((r, r)) for i in range(k) + range(k+1, len(F)): FF = FF * FF_init[i] # unfolded tensor times Khatri-Rao product XF = T.uttkrp(F, k) F[k] = F[k]*XF/(F[k].dot(FF)) # F[k] = nnls(FF, XF.T).T FF_init[k] = (F[k].T.dot(F[k])) return F, FF_init min A 0 kT(1) A(C B)T k min B 0 kT(2) B(C A)T k min C 0 kT(3) C(B A)T k arg min W,H kX WHk s. J. Kim and H. Park. Fast Nonnegative Tensor Factorization with an Active-set-like Method.
 In High-Performance Scientific Computing: Algorithms and Applications, Springer, 2012, pp. 311-326. W W • XHT WHHT T(1)(C B)
  • 27.
    HOW TO INTERPRET:USER X TERM X TIME X is a 3-way tensor in which xnmt is 1 if the term m was used by user n at interval t, 0 otherwise ANxK is the the association of each user n to a factor k BMxK is the association of each term m to a factor k CTxK shows the time activity of each factor users users C = X A B (N×M×T) (T×K) (N×K) (M×K) terms tim e tim e terms factors
  • 28.
  • 29.
    TOOLS FOR TENSORDECOMPOSITION
  • 30.
    TOOLS FOR TENSORFACTORIZATION
  • 31.
    TOOLS: THE PYTHONWORLD NumPy SciPy Scikit-Tensor (under development): github.com/mnick/scikit-tensor NTF: gist.github.com/panisson/7719245
  • 32.
    TENSOR DECOMPOSITION OFWEARABLE SENSOR DATA
  • 34.
  • 35.
  • 36.
  • 37.
    0 1 0 10 1 0 1 0 FROM TEMPORAL GRAPHS TO 3-WAY TENSORS
  • 38.
    temporal network tensorial representation tensor factorization factors communitiestemporal activity factorization quality A,B C tuning the complexity of the model nodes communities 1B 5A 3B 5B 2B 2A 3A 4A 1A 4B 50 60 70 80 35 40 45 50 35 40 45 50 50 60 0 10 20 30 4040 0 5 10 15 20 25 30 50 60 70 80 35 40 45 50 40 45 50 50 60 0 10 20 30 4040 0 5 10 15 20 25 30 50 60 70 80 35 40 45 50 50 60 0 10 20 30 4040 0 5 10 15 20 25 30 structures in temporal networks components nodes time time interval quality metrics component
  • 39.
    L. Gauvin etal., PLoS ONE 9(1), e86028 (2014) 1B 5A 3B 5B 2B 2A 3A 4A 1A 4B TENSOR DECOMPOSITION OF SCHOOL NETWORK
  • 40.
  • 41.
    Laetitia Gauvin CiroCattuto Anna Sapienza .fit().predict() ( )
  • 42.