KEMBAR78
Major issues in data mining | PPTX
Major Issues in Data Mining
V. Saranya
AP/CSE
Sri Vidya College of Engineering & Technology, Virudhunagar
• Issues
– Mining Methodology
– User interaction
– Performance
– Data types.
Mining Methodology & User
Interaction Issues
1. Mining different kinds of knowledge in
database.
 Different users-different knowledge-different way
(with same database)
2. Interactive Mining of knowledge at multiple
levels of abstraction.
 Focus the search patterns.
 Different angles.
4. Data mining query languages and ad hoc
data mining
 High level data mining query language
 Conditions and constraints.
3. Incorporation of background knowledge.
 Background & Domain knowledge.
5. Presentation and visualization of data mining
results.
 Use visual representations.
 Expressive forms like graph, chart, matrices,
curves, tables, etc…
6. Handling noisy or incomplete data.
 Confuse the process
 Over fit the data (apply any outlier analysis,
data cleaning methods)
7.Pattern evaluation- the interestingness
problem.
 Pattern may be uninteresting to the user.
 Solve by user specified constraints.
Performance Issues
• Efficiency and scalability of data mining algorithms.
Running time.
Should be opt for huge amount of data.
• Parallel, Distributed and incremental mining
algorithms.
Huge size of database
Wide distribution of data
High cost
Computational complexity
Data mining methods
Solve by; efficient algorithms.
Diversity of data Types Issues
• Handling of relational and complex types of
data.
One system-> to mine all kinds of data
Specific data mining system should be
constructed.
• Mining information from heterogeneous
databases and global information systems.
 Web mining uncover knowledge about web
contents, web structure, web usage and web
dynamics

Major issues in data mining

  • 1.
    Major Issues inData Mining V. Saranya AP/CSE Sri Vidya College of Engineering & Technology, Virudhunagar
  • 3.
    • Issues – MiningMethodology – User interaction – Performance – Data types.
  • 4.
    Mining Methodology &User Interaction Issues 1. Mining different kinds of knowledge in database.  Different users-different knowledge-different way (with same database)
  • 5.
    2. Interactive Miningof knowledge at multiple levels of abstraction.  Focus the search patterns.  Different angles.
  • 6.
    4. Data miningquery languages and ad hoc data mining  High level data mining query language  Conditions and constraints.
  • 7.
    3. Incorporation ofbackground knowledge.  Background & Domain knowledge.
  • 8.
    5. Presentation andvisualization of data mining results.  Use visual representations.  Expressive forms like graph, chart, matrices, curves, tables, etc… 6. Handling noisy or incomplete data.  Confuse the process  Over fit the data (apply any outlier analysis, data cleaning methods) 7.Pattern evaluation- the interestingness problem.  Pattern may be uninteresting to the user.  Solve by user specified constraints.
  • 9.
    Performance Issues • Efficiencyand scalability of data mining algorithms. Running time. Should be opt for huge amount of data. • Parallel, Distributed and incremental mining algorithms. Huge size of database Wide distribution of data High cost Computational complexity Data mining methods Solve by; efficient algorithms.
  • 10.
    Diversity of dataTypes Issues • Handling of relational and complex types of data. One system-> to mine all kinds of data Specific data mining system should be constructed. • Mining information from heterogeneous databases and global information systems.  Web mining uncover knowledge about web contents, web structure, web usage and web dynamics