KEMBAR78
Kubernetes Introduction | PPTX
Kubernetes
Introduction
Advanced Technology Group (ATG)
for Open Source & Cloud
August 2016
What is
Kubernetes?
2
ĪšĻ…Ī²ĪµĻĪ½Ī®Ļ„Ī·Ļ‚ — Greek:
A nautical term meaning ā€œhelmsmanā€ or ā€œpilotā€
ā€œK8sā€
Kubernetes
ā€œOpen Source Container Cluster Managerā€
• Google — Architect and creator.
• Borg — Google’s internal cluster management software.
 Kubernetes – complete rewrite, (in Go).
• Google partnered with Linux Foundation to form:
 Cloud Native Computing Foundation (CNCF)
 offered Kubernetes as a seed technology
3
Kubernetes History
2013 2014 2015 2016
Apr 2015
Tectonic formed
(commercial support)
Apr 2015
The Borg Paper
is published
Sep 2014
Kubernetes
announced in
Wired magazine
Jun 2014
Kubernetes
1st GitHub
commit
Mar 2013
Docker initial
release
Aug 2014
CoreOS introduces
Flannel networking
Oct 2013
CoreOS initial
release
4
2008 …2006
2006
Google starts work on
ā€œProcess Containersā€
(renamed ā€œcgroupsā€)
Jan 2008
cgroups merged
into Linux (2.6.24)
2007
July 2015
CNCF Formed,
K8s v1.0 released,
donated to CNCF
Borg development inside Google
Kubernetes Tech Specs
Features
• μService Architecture
• Automatic Workload Placement (efficient)
• Auto Remediating (self healing)
• Horizontal Scaling
• Load Balanced
• Declarative Deployment
• Service Discovery included
• A/B & Canary Deployments (testing)
Surrounding Ecosystem
ļ‚§ Docker – the container ā€œengineā€ on each host.
ļ‚§ etcd (from CoreOS) – distributed K/V store.
ļ‚§ CoreOS – the platform.
ļ‚§ Flannel – overlay networking.
ļ‚§ Hosted Service: Google Container Platform
ļ‚§ GKE is the abbreviation.
5
6
Network
Client
μService Programming Model — Cloud Native
proxy
μS
…
μS
μS
proxy
μS
…
μS
μS
proxy
μS
…
μS
μS
proxy
μS
…
μS
μS
proxy
μS
…
μS
μS
proxy
μS
…
μS
μS
(HTTP)Route/Proxy
Optional
(nginx)
Pod
(container)
Service
ā€œLoad Balancerā€
Kubernetes – Programming Model
7
• Filesystem – that the program uses.
• Persistent – how state is saved beyond run-time.
• Persistent Volumes are attached and live outside of the
K8s cluster.
Volumes & Persistent Volumes
Pod
• One (or more) containers ā€œgroupedā€
• Network (IP address): shared
• Volumes: shared
Service
• Common API (behavior) replicated across the cluster.
• Well Known Endpoint – a consistent IP address,
regardless of changes in specific Pods underneath.
Service
proxy
Host (ā€œnodeā€ in K8s)
Pod – different μS
Pod
Container(s)
proxy
Host (ā€œnodeā€ in K8s)
Pod
Container(s)
Volume,
external
to K8s
Abstract
(Common IP)
Kubernetes – Framework Architecture
8
Client
Control
Plane
Workload
*https://github.com/kubernetes/kubernetes/blob/release-1.3/docs/design/architecture.md
Kubernetes – Framework Architecture
9
• K8s is extensible
• Storage Plugin(s)
- NFS / iSCSI
- AWS-EC2 / Google GCE
- Ceph (RBD/CephFS) / Gluster
- Cinder (OpenStack)
• Other Extension Points
- Logging
- Access & Auth
- Scheduler
Control Plane Worker Node(s) Client
Extension Points
kubelet:
local, control plane agent.
Pod management using
docker-engine.
kube-proxy:
internal service routing
(i.e. TCP/UDP stream
forwarding)
docker-engine:
container execution
kube-apiserver:
Client’s API access point.
Routes requests to appropriate,
internal components.
kube-controller-manager:
Embeds the core control loops.
• Replication controller
• Endpoints controller (proxies)
• Namespace controller
kube-scheduler:
Workload (Pod) placement.
Sophisticated, configurable,
globally aware.
etcd (from CoreOS):
Distributed, watchable storage
The k8s system state
kubectl:
CLI into K8s
HTTP — RESTful protocol.
Kubernetes – Deployment Model
A Declarative Model
10
Manifest File(s)
Labels
PodSpec clause – within most descriptors
Replication Controller descriptor
• Optional only in trivial cases.
• (trivial = CLI only possible)
• YAML (or JSON) format.
• Key/Value ā€œtagsā€ – placed on any deployable object.
• Selectable – by actions and other declarations.
• Configuration Flexibility
• Labeled
• allows versioning
• other constraint application
• Container(s)
• very Dockerfile / docker-compose like.
• Image location, (including image version)
• Volume requirements
• Ports exposed
• ā€œtemplate/specā€ clause declares PodSpec configuration.
• ā€œreplicaā€ clause declares sizing of the service.
• Rolling-updates & canary deploys are a supported
pattern.
Descriptor Types (partial list)
• Replication Controller
• Deployment
• Pod
• Job
• Service
Running a Kubernetes Cluster
11
ā€œThere’s more than one way to do itā€
– Larry Wall
Kubernetes in Public Cloud
12
Hosted Solution — Google Cloud Platform
Google Container Engine (GKE)
• Kubernetes Getting Started Guide ā€œ101ā€
• Hello World Walkthrough
https://cloud.google.com/container-engine/
http://kubernetes.io/docs/hellonode/
Turn-key Solutions
Amazon Web Services (AWS) EC2 http://kubernetes.io/docs/getting-started-guides/aws/
Azure http://kubernetes.io/docs/getting-started-guides/azure/
Free Trial —
60 days
$300 credit
Kubernetes Run Locally
13
On a Laptop / Desktop
Minikube
• K8s recommended method for single node deploy
http://kubernetes.io/docs/getting-started-guides/minikube/
Vagrant — superseded by Minikube, still usable. http://kubernetes.io/docs/getting-started-guides/vagrant/
kube-up.sh — another previous ā€œ#1ā€ method by k8s http://containertutorials.com/get_started_kubernetes/index.html
Easy Kubernetes Cluster for macOS
• Recently discovered and recommended by our team (ATG).
https://github.com/TheNewNormal/kube-cluster-osx
Multi-host / Lab
CoreOS w/ Fleet • https://github.com/CaptTofu/kubernetes-cluster-fleet
• https://github.com/coreos/coreos-vagrant
• https://github.com/mhamrah/kubernetes-coreos-units
A Kubernetes Application
14
Kubernetes Application
– minimalist application –
15
1. Construct • Create a standard Docker application, a μService.
• Package it as a Docker Image.
2. Deploy • Deploy the Docker Image to a Docker Repository.
3. Run • kubectl run … --image=<Image-Repository-Path>
K8s App — Construct
16
app.py*
from flask import Flask
app = Flask(__name__)
@app.route('/')
def hello_world():
return '-- Hello Flask Dockerized --n'
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0')
Dockerfile*
FROM ubuntu:latest
RUN apt-get update -y
RUN apt-get install -y python-pip python-dev build-essential
COPY . /apt
WORKDIR /apt
RUN pip install -r requirements.txt
ENTRYPOINT ["python"]
CMD ["app.py"]
*https://github.com/egustafson/ex-py-docker-flask
Build
Run
Verify (in a separate console)
# docker build –t ex-py-docker-flask .
...
...<many lines of output>
...
Successfully built 0fb21b16f3dd
#
# docker run –p 5000:5000 ex-py-docker-flask
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger pin code: 236-035-556
# curl http://localhost:5000
-- Hello Flask Dockerized –-
#
run outside localhost
(default port: 5000)
K8s App — Deploy
17
Hosted K8s – Google Container Engine
Local ā€œlaptopā€ – Minikube... (from the construct stage … mostly) ...
# docker build –t gcr.io/<my-proj-id>/ex-py-flask:v1 .
...
# gcloud docker push gcr.io/<my-proj-id>/ex-py-flask:v1
# minikube start
Starting local Kubernetes cluster...
Kubernetes is available at https://192.168.99.100:8443.
Kubectl is now configured to use the cluster.
# eval $(minikube docker-env)
# docker build –t library/ex-py-docker-flask .
Caveat: the method used above is a bit of a ā€œhackā€. Using the
ā€˜docker-env’ combined with ā€˜docker build’ works because
Minikube only deploys into a single host. As a consequence the
Docker image will be available in the local Docker repository.
If Minikube ran across two or more hosts then the node Kubernetes
choses to run the Pod (container) on may not match where it was
built.
*http://kubernetes.io/docs/hellonode/
GCR
Convention
(alternate)
K8s App — Run
18
Hosted K8s – Google Container Engine Local ā€œlaptopā€ – Minikube
# kubectl run flask-node 
-–image=gcr.io/<my-proj-id>/ex-py-flask:v1 
--port=5000
Deployment ā€œflask-nodeā€ created
# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-node-714049816-ztzrb 1/1 Running 0 6m
# kubectl expose deployment flask-node -–type=ā€œLoadBalancerā€
# kubectl get services flask-node
NAME CLUSTER_IP EXTERNAL_IP PORT(S) AGE
hello-node 10.3.246.12 23.251.159.72 5000/TCP 2m
Run
Verify
Run
Verify
# curl http://23.251.159.72:5000
-- Hello Flask Dockerized –
#
1.
2.
3.
4.
# kubectl run flask-node 
-–image=library/ex-py-docker-flask 
--port=5000
Deployment ā€œflask-nodeā€ created
# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-node-714049816-ztzrb 1/1 Running 0 6m
# kubectl expose deployment flask-node -–type=ā€œNodePortā€
1.
2.
3.
# minikube service flask-node –-url
http://192.168.99.100:31992
# curl $(minikube service flask-node –-url)
-- Hello Flask Dockerized –
#
Getting Involved
19
Community http://kubernetes.io/community/
GitHub http://github.com/kubernetes
Project Page & Documents http://kubernetes.io
Slack (chat) (sign-up: http://slack.k8s.io/) https://kubernetes.slack.com
Special Interest Groups (SIGs)
(+20 topics)
Community Page  SIGs
(https://github.com/kubernetes/community/blob/master/README.md#special-interest-groups-sig)
Demo
https://github.com/egustafson/ex-gke-webdrop
20
https://github.com/egustafson/webdrop-py
Thank you
Advanced Technology Group for Open Source and Cloud
Eric Gustafson gustafson@hpe.com
Patrick Galbraith patg@hpe.com
Clare Springer clarissa.springer@hpe.com
21
Backup Slides
(Kubernetes Introduction)
22
Advanced Technology Group
for Open Source & Cloud
HPE's Advanced Technology Group for Open
Source & Cloud embraces a vision that is two
steps ahead of today's solutions.
We use this vision to drive product adoption
and incubate technologies to advance HPE.
Through open source initiatives we foster
collaboration across HPE and beyond.
23
Patrick Galbraith
patg@hpe.com
http://patg.net/
Interests: Kubernetes,
Ansible, MySQL projects
New Hampshire, USA
Eric Gustafson
gustafson@hpe.com
http://egustafson.github.io/
Interests: Monitoring,
Networking, Embedded/IoT
Colorado, USA
Brian Aker, Fellow
Yazz Atlas, Principle Engineer
Hillary Cirimele, Executive Assistant
Matt Farina, Principle Engineer
Patrick Galbraith, Principle Engineer
Eric Gustafson, Principle Engineer
Clare Springer, Program Manager
References – Kubernetes Introduction
• ā€œLarge-scale cluster management at Google with Borgā€
• https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf
• ā€œOmega: flexible, scalable schedulers for large compute clustersā€
• https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41684.pdf
• ā€œBorg, Omega, and Kubernetesā€
• https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf
• ā€œJupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter Networkā€
• http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p183.pdf
24

Kubernetes Introduction

  • 1.
    Kubernetes Introduction Advanced Technology Group(ATG) for Open Source & Cloud August 2016
  • 2.
    What is Kubernetes? 2 ĪšĻ…Ī²ĪµĻĪ½Ī®Ļ„Ī·Ļ‚ —Greek: A nautical term meaning ā€œhelmsmanā€ or ā€œpilotā€ ā€œK8sā€
  • 3.
    Kubernetes ā€œOpen Source ContainerCluster Managerā€ • Google — Architect and creator. • Borg — Google’s internal cluster management software.  Kubernetes – complete rewrite, (in Go). • Google partnered with Linux Foundation to form:  Cloud Native Computing Foundation (CNCF)  offered Kubernetes as a seed technology 3
  • 4.
    Kubernetes History 2013 20142015 2016 Apr 2015 Tectonic formed (commercial support) Apr 2015 The Borg Paper is published Sep 2014 Kubernetes announced in Wired magazine Jun 2014 Kubernetes 1st GitHub commit Mar 2013 Docker initial release Aug 2014 CoreOS introduces Flannel networking Oct 2013 CoreOS initial release 4 2008 …2006 2006 Google starts work on ā€œProcess Containersā€ (renamed ā€œcgroupsā€) Jan 2008 cgroups merged into Linux (2.6.24) 2007 July 2015 CNCF Formed, K8s v1.0 released, donated to CNCF Borg development inside Google
  • 5.
    Kubernetes Tech Specs Features •μService Architecture • Automatic Workload Placement (efficient) • Auto Remediating (self healing) • Horizontal Scaling • Load Balanced • Declarative Deployment • Service Discovery included • A/B & Canary Deployments (testing) Surrounding Ecosystem ļ‚§ Docker – the container ā€œengineā€ on each host. ļ‚§ etcd (from CoreOS) – distributed K/V store. ļ‚§ CoreOS – the platform. ļ‚§ Flannel – overlay networking. ļ‚§ Hosted Service: Google Container Platform ļ‚§ GKE is the abbreviation. 5
  • 6.
    6 Network Client μService Programming Model— Cloud Native proxy μS … μS μS proxy μS … μS μS proxy μS … μS μS proxy μS … μS μS proxy μS … μS μS proxy μS … μS μS (HTTP)Route/Proxy Optional (nginx) Pod (container) Service ā€œLoad Balancerā€
  • 7.
    Kubernetes – ProgrammingModel 7 • Filesystem – that the program uses. • Persistent – how state is saved beyond run-time. • Persistent Volumes are attached and live outside of the K8s cluster. Volumes & Persistent Volumes Pod • One (or more) containers ā€œgroupedā€ • Network (IP address): shared • Volumes: shared Service • Common API (behavior) replicated across the cluster. • Well Known Endpoint – a consistent IP address, regardless of changes in specific Pods underneath. Service proxy Host (ā€œnodeā€ in K8s) Pod – different μS Pod Container(s) proxy Host (ā€œnodeā€ in K8s) Pod Container(s) Volume, external to K8s Abstract (Common IP)
  • 8.
    Kubernetes – FrameworkArchitecture 8 Client Control Plane Workload *https://github.com/kubernetes/kubernetes/blob/release-1.3/docs/design/architecture.md
  • 9.
    Kubernetes – FrameworkArchitecture 9 • K8s is extensible • Storage Plugin(s) - NFS / iSCSI - AWS-EC2 / Google GCE - Ceph (RBD/CephFS) / Gluster - Cinder (OpenStack) • Other Extension Points - Logging - Access & Auth - Scheduler Control Plane Worker Node(s) Client Extension Points kubelet: local, control plane agent. Pod management using docker-engine. kube-proxy: internal service routing (i.e. TCP/UDP stream forwarding) docker-engine: container execution kube-apiserver: Client’s API access point. Routes requests to appropriate, internal components. kube-controller-manager: Embeds the core control loops. • Replication controller • Endpoints controller (proxies) • Namespace controller kube-scheduler: Workload (Pod) placement. Sophisticated, configurable, globally aware. etcd (from CoreOS): Distributed, watchable storage The k8s system state kubectl: CLI into K8s HTTP — RESTful protocol.
  • 10.
    Kubernetes – DeploymentModel A Declarative Model 10 Manifest File(s) Labels PodSpec clause – within most descriptors Replication Controller descriptor • Optional only in trivial cases. • (trivial = CLI only possible) • YAML (or JSON) format. • Key/Value ā€œtagsā€ – placed on any deployable object. • Selectable – by actions and other declarations. • Configuration Flexibility • Labeled • allows versioning • other constraint application • Container(s) • very Dockerfile / docker-compose like. • Image location, (including image version) • Volume requirements • Ports exposed • ā€œtemplate/specā€ clause declares PodSpec configuration. • ā€œreplicaā€ clause declares sizing of the service. • Rolling-updates & canary deploys are a supported pattern. Descriptor Types (partial list) • Replication Controller • Deployment • Pod • Job • Service
  • 11.
    Running a KubernetesCluster 11 ā€œThere’s more than one way to do itā€ – Larry Wall
  • 12.
    Kubernetes in PublicCloud 12 Hosted Solution — Google Cloud Platform Google Container Engine (GKE) • Kubernetes Getting Started Guide ā€œ101ā€ • Hello World Walkthrough https://cloud.google.com/container-engine/ http://kubernetes.io/docs/hellonode/ Turn-key Solutions Amazon Web Services (AWS) EC2 http://kubernetes.io/docs/getting-started-guides/aws/ Azure http://kubernetes.io/docs/getting-started-guides/azure/ Free Trial — 60 days $300 credit
  • 13.
    Kubernetes Run Locally 13 Ona Laptop / Desktop Minikube • K8s recommended method for single node deploy http://kubernetes.io/docs/getting-started-guides/minikube/ Vagrant — superseded by Minikube, still usable. http://kubernetes.io/docs/getting-started-guides/vagrant/ kube-up.sh — another previous ā€œ#1ā€ method by k8s http://containertutorials.com/get_started_kubernetes/index.html Easy Kubernetes Cluster for macOS • Recently discovered and recommended by our team (ATG). https://github.com/TheNewNormal/kube-cluster-osx Multi-host / Lab CoreOS w/ Fleet • https://github.com/CaptTofu/kubernetes-cluster-fleet • https://github.com/coreos/coreos-vagrant • https://github.com/mhamrah/kubernetes-coreos-units
  • 14.
  • 15.
    Kubernetes Application – minimalistapplication – 15 1. Construct • Create a standard Docker application, a μService. • Package it as a Docker Image. 2. Deploy • Deploy the Docker Image to a Docker Repository. 3. Run • kubectl run … --image=<Image-Repository-Path>
  • 16.
    K8s App —Construct 16 app.py* from flask import Flask app = Flask(__name__) @app.route('/') def hello_world(): return '-- Hello Flask Dockerized --n' if __name__ == '__main__': app.run(debug=True, host='0.0.0.0') Dockerfile* FROM ubuntu:latest RUN apt-get update -y RUN apt-get install -y python-pip python-dev build-essential COPY . /apt WORKDIR /apt RUN pip install -r requirements.txt ENTRYPOINT ["python"] CMD ["app.py"] *https://github.com/egustafson/ex-py-docker-flask Build Run Verify (in a separate console) # docker build –t ex-py-docker-flask . ... ...<many lines of output> ... Successfully built 0fb21b16f3dd # # docker run –p 5000:5000 ex-py-docker-flask * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit) * Restarting with stat * Debugger is active! * Debugger pin code: 236-035-556 # curl http://localhost:5000 -- Hello Flask Dockerized –- # run outside localhost (default port: 5000)
  • 17.
    K8s App —Deploy 17 Hosted K8s – Google Container Engine Local ā€œlaptopā€ – Minikube... (from the construct stage … mostly) ... # docker build –t gcr.io/<my-proj-id>/ex-py-flask:v1 . ... # gcloud docker push gcr.io/<my-proj-id>/ex-py-flask:v1 # minikube start Starting local Kubernetes cluster... Kubernetes is available at https://192.168.99.100:8443. Kubectl is now configured to use the cluster. # eval $(minikube docker-env) # docker build –t library/ex-py-docker-flask . Caveat: the method used above is a bit of a ā€œhackā€. Using the ā€˜docker-env’ combined with ā€˜docker build’ works because Minikube only deploys into a single host. As a consequence the Docker image will be available in the local Docker repository. If Minikube ran across two or more hosts then the node Kubernetes choses to run the Pod (container) on may not match where it was built. *http://kubernetes.io/docs/hellonode/ GCR Convention (alternate)
  • 18.
    K8s App —Run 18 Hosted K8s – Google Container Engine Local ā€œlaptopā€ – Minikube # kubectl run flask-node -–image=gcr.io/<my-proj-id>/ex-py-flask:v1 --port=5000 Deployment ā€œflask-nodeā€ created # kubectl get pods NAME READY STATUS RESTARTS AGE flask-node-714049816-ztzrb 1/1 Running 0 6m # kubectl expose deployment flask-node -–type=ā€œLoadBalancerā€ # kubectl get services flask-node NAME CLUSTER_IP EXTERNAL_IP PORT(S) AGE hello-node 10.3.246.12 23.251.159.72 5000/TCP 2m Run Verify Run Verify # curl http://23.251.159.72:5000 -- Hello Flask Dockerized – # 1. 2. 3. 4. # kubectl run flask-node -–image=library/ex-py-docker-flask --port=5000 Deployment ā€œflask-nodeā€ created # kubectl get pods NAME READY STATUS RESTARTS AGE flask-node-714049816-ztzrb 1/1 Running 0 6m # kubectl expose deployment flask-node -–type=ā€œNodePortā€ 1. 2. 3. # minikube service flask-node –-url http://192.168.99.100:31992 # curl $(minikube service flask-node –-url) -- Hello Flask Dockerized – #
  • 19.
    Getting Involved 19 Community http://kubernetes.io/community/ GitHubhttp://github.com/kubernetes Project Page & Documents http://kubernetes.io Slack (chat) (sign-up: http://slack.k8s.io/) https://kubernetes.slack.com Special Interest Groups (SIGs) (+20 topics) Community Page  SIGs (https://github.com/kubernetes/community/blob/master/README.md#special-interest-groups-sig)
  • 20.
  • 21.
    Thank you Advanced TechnologyGroup for Open Source and Cloud Eric Gustafson gustafson@hpe.com Patrick Galbraith patg@hpe.com Clare Springer clarissa.springer@hpe.com 21
  • 22.
  • 23.
    Advanced Technology Group forOpen Source & Cloud HPE's Advanced Technology Group for Open Source & Cloud embraces a vision that is two steps ahead of today's solutions. We use this vision to drive product adoption and incubate technologies to advance HPE. Through open source initiatives we foster collaboration across HPE and beyond. 23 Patrick Galbraith patg@hpe.com http://patg.net/ Interests: Kubernetes, Ansible, MySQL projects New Hampshire, USA Eric Gustafson gustafson@hpe.com http://egustafson.github.io/ Interests: Monitoring, Networking, Embedded/IoT Colorado, USA Brian Aker, Fellow Yazz Atlas, Principle Engineer Hillary Cirimele, Executive Assistant Matt Farina, Principle Engineer Patrick Galbraith, Principle Engineer Eric Gustafson, Principle Engineer Clare Springer, Program Manager
  • 24.
    References – KubernetesIntroduction • ā€œLarge-scale cluster management at Google with Borgā€ • https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf • ā€œOmega: flexible, scalable schedulers for large compute clustersā€ • https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41684.pdf • ā€œBorg, Omega, and Kubernetesā€ • https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf • ā€œJupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter Networkā€ • http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p183.pdf 24

Editor's Notes

  • #24Ā This is a sample Picture Right with Caption slide ideal for including a picture with a brief descriptive statement. To Replace the Picture on this Sample Slide (this applies to all slides in this template that contain replaceable pictures) Select the sample picture and press Delete. Click the icon inside the shape to open the Insert Picture dialog box. Navigate to the location where the picture is stored, select desired picture and click on the Insert button to fit the image proportionally within the shape. Note: Do not right-click the image to change the picture inside the picture placeholder. This will change the frame size of the picture placeholder. Instead, follow the steps outlined above. Tip: use the Crop tool to reposition a picture within a placeholder. From the Picture Tools Format tab on the ribbon, click the Crop button. Click and drag the picture within the placeholder to reposition. To scale the picture within the placeholder (while Crop is active), grab a round corner handle and drag to resize. Hold Shift key to constrain picture aspect ratio when resizing.