KEMBAR78
seaborn_python library_python_library.pptx
Introduction
to Seaborn
IN TR O DU CTIO N TO S E A B O R
N
Erin Case
Data
Scientist
What is Seaborn?
Python data visualization library
Easily create the most common types of
plots
INTRODUCTION TO SEABORN
Why is Seaborn useful?
INTRODUCTION TO SEABORN
Advantages of Seaborn
Easy to
use
Works well
with
Built on top of
pandas data
structures
matplotlib
INTRODUCTION TO SEABORN
Getting started
import seaborn as sns
import matplotlib.pyplot as
plt
Samuel Norman Seaborn ( sns )
"The West Wing" television
show
INTRODUCTION TO SEABORN
Example 1: Scatter
plot
import seaborn as sns
import matplotlib.pyplot as plt
height = [62, 64, 69, 75,
66,
68, 65, 71, 76, 73]
weight = [120, 136, 148, 175,
137,
165, 154, 172, 200, 187]
sns.scatterplot(x=height,
y=weight) plt.show()
INTRODUCTION TO SEABORN
Example 2: Create a count
plot
import seaborn as sns
import matplotlib.pyplot as plt
gender = ["Female", "Female",
"Female", "Female",
"Male", "Male",
"Male",
"Male", "Male",
"Male"]
sns.countplot(x=gender)
plt.show()
INTRODUCTION TO SEABORN
INTRODUCTION TO SEABORN
Let's
practice!
IN TR O DU CTIO N TO S E A B O R
N
Using pandas
with
Seaborn
IN TR O DU CTIO N TO S E A B O R
N
Erin Case
Data
Scientist
What is pandas?
Python library for data analysis
Easily read datasets from csv, txt, and other types of
files Datasets take the form of DataFrame
objects
INTRODUCTION TO SEABORN
Working with DataFrames
import pandas as pd
df =
pd.read_csv("masculinity.csv")
df.head()
INTRODUCTION TO SEABORN
0
1
2
3
4
participant_id
1
2
3
4
5
age
18 -
34
18 -
34
18 -
34
18 -
34
18 -
34
how_masculine
Somewhat
Somewhat
Very
Very
Very
how_important
Somewhat
Somewhat
Not
very
Not
very
Very
Using DataFrames with countplot()
import pandas as pd
import matplotlib.pyplot as
plt import seaborn as sns
df =
pd.read_csv("masculinity.csv")
sns.countplot(x="how_masculine",
data=df)
plt.show()
INTRODUCTION TO SEABORN
INTRODUCTION TO SEABORN
INTRODUCTION TO SEABORN
Let's
practice!
IN TR O DU CTIO N TO S E A B O R
N
Adding a third
variable with
hue
IN TR O DU CTIO N TO S E A B O R
N
Erin Case
Data
Scientist
Tips dataset
import pandas as pd
import seaborn as
sns
tips =
sns.load_dataset("tips")
tips.head()
INTRODUCTION TO SEABORN
sex
smoker
0
1
2
3
4
total_bill tip
16.99 1.01
Female
10.34 1.66
Male
21.01 3.50
Male
23.68 3.31
Male
24.59 3.61
day time
size No Sun
Dinner
2
No Sun
Dinner 3
No Sun
Dinner 3
No Sun
A basic scatter
plot
import matplotlib.pyplot as
plt import seaborn as sns
sns.scatterplot(x="total_bill"
,
y="tip",
data=tips)
plt.show()
INTRODUCTION TO SEABORN
A scatter plot with hue
import matplotlib.pyplot as
plt import seaborn as sns
sns.scatterplot(x="total_bill"
,
y="tip",
data=tips,
hue="smoker"
)
plt.show()
INTRODUCTION TO SEABORN
Setting hue order
import matplotlib.pyplot as
plt import seaborn as sns
sns.scatterplot(x="total_bill"
,
y="tip",
data=tips,
hue="smoker",
hue_order=["Yes"
,
"No"]
)
plt.show()
INTRODUCTION TO SEABORN
Specifying hue colors
import matplotlib.pyplot as
plt import seaborn as sns
hue_colors = {"Yes": "black",
"No": "red"}
sns.scatterplot(x="total_bill"
,
y="tip",
data=tips,
hue="smoker",
palette=hue_colors)
plt.show()
INTRODUCTION TO SEABORN
INTRODUCTION TO SEABORN
Using HTML hex color codes with
hue
import matplotlib.pyplot as
plt import seaborn as sns
hue_colors = {"Yes":
"#808080",
"No": "#00FF00"}
sns.scatterplot(x="total_bill"
,
y="tip",
data=tips,
hue="smoker",
palette=hue_colors)
plt.show()
INTRODUCTION TO SEABORN
Using hue with count plots
import matplotlib.pyplot as
plt import seaborn as sns
sns.countplot(x="smoker",
data=tips,
hue="sex"
)
plt.show()
INTRODUCTION TO SEABORN
Let's
practice!
IN TR O DU CTIO N TO S E A B O R
N

seaborn_python library_python_library.pptx

  • 1.
    Introduction to Seaborn IN TRO DU CTIO N TO S E A B O R N Erin Case Data Scientist
  • 2.
    What is Seaborn? Pythondata visualization library Easily create the most common types of plots INTRODUCTION TO SEABORN
  • 3.
    Why is Seabornuseful? INTRODUCTION TO SEABORN
  • 4.
    Advantages of Seaborn Easyto use Works well with Built on top of pandas data structures matplotlib INTRODUCTION TO SEABORN
  • 5.
    Getting started import seabornas sns import matplotlib.pyplot as plt Samuel Norman Seaborn ( sns ) "The West Wing" television show INTRODUCTION TO SEABORN
  • 6.
    Example 1: Scatter plot importseaborn as sns import matplotlib.pyplot as plt height = [62, 64, 69, 75, 66, 68, 65, 71, 76, 73] weight = [120, 136, 148, 175, 137, 165, 154, 172, 200, 187] sns.scatterplot(x=height, y=weight) plt.show() INTRODUCTION TO SEABORN
  • 7.
    Example 2: Createa count plot import seaborn as sns import matplotlib.pyplot as plt gender = ["Female", "Female", "Female", "Female", "Male", "Male", "Male", "Male", "Male", "Male"] sns.countplot(x=gender) plt.show() INTRODUCTION TO SEABORN
  • 8.
  • 9.
    Let's practice! IN TR ODU CTIO N TO S E A B O R N
  • 10.
    Using pandas with Seaborn IN TRO DU CTIO N TO S E A B O R N Erin Case Data Scientist
  • 11.
    What is pandas? Pythonlibrary for data analysis Easily read datasets from csv, txt, and other types of files Datasets take the form of DataFrame objects INTRODUCTION TO SEABORN
  • 12.
    Working with DataFrames importpandas as pd df = pd.read_csv("masculinity.csv") df.head() INTRODUCTION TO SEABORN 0 1 2 3 4 participant_id 1 2 3 4 5 age 18 - 34 18 - 34 18 - 34 18 - 34 18 - 34 how_masculine Somewhat Somewhat Very Very Very how_important Somewhat Somewhat Not very Not very Very
  • 13.
    Using DataFrames withcountplot() import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv("masculinity.csv") sns.countplot(x="how_masculine", data=df) plt.show() INTRODUCTION TO SEABORN
  • 14.
  • 15.
  • 16.
    Let's practice! IN TR ODU CTIO N TO S E A B O R N
  • 17.
    Adding a third variablewith hue IN TR O DU CTIO N TO S E A B O R N Erin Case Data Scientist
  • 18.
    Tips dataset import pandasas pd import seaborn as sns tips = sns.load_dataset("tips") tips.head() INTRODUCTION TO SEABORN sex smoker 0 1 2 3 4 total_bill tip 16.99 1.01 Female 10.34 1.66 Male 21.01 3.50 Male 23.68 3.31 Male 24.59 3.61 day time size No Sun Dinner 2 No Sun Dinner 3 No Sun Dinner 3 No Sun
  • 19.
    A basic scatter plot importmatplotlib.pyplot as plt import seaborn as sns sns.scatterplot(x="total_bill" , y="tip", data=tips) plt.show() INTRODUCTION TO SEABORN
  • 20.
    A scatter plotwith hue import matplotlib.pyplot as plt import seaborn as sns sns.scatterplot(x="total_bill" , y="tip", data=tips, hue="smoker" ) plt.show() INTRODUCTION TO SEABORN
  • 21.
    Setting hue order importmatplotlib.pyplot as plt import seaborn as sns sns.scatterplot(x="total_bill" , y="tip", data=tips, hue="smoker", hue_order=["Yes" , "No"] ) plt.show() INTRODUCTION TO SEABORN
  • 22.
    Specifying hue colors importmatplotlib.pyplot as plt import seaborn as sns hue_colors = {"Yes": "black", "No": "red"} sns.scatterplot(x="total_bill" , y="tip", data=tips, hue="smoker", palette=hue_colors) plt.show() INTRODUCTION TO SEABORN
  • 23.
  • 24.
    Using HTML hexcolor codes with hue import matplotlib.pyplot as plt import seaborn as sns hue_colors = {"Yes": "#808080", "No": "#00FF00"} sns.scatterplot(x="total_bill" , y="tip", data=tips, hue="smoker", palette=hue_colors) plt.show() INTRODUCTION TO SEABORN
  • 25.
    Using hue withcount plots import matplotlib.pyplot as plt import seaborn as sns sns.countplot(x="smoker", data=tips, hue="sex" ) plt.show() INTRODUCTION TO SEABORN
  • 26.
    Let's practice! IN TR ODU CTIO N TO S E A B O R N