KEMBAR78
sorting and its types | PPTX
Sorting
And Its
Types
SORTING
Sorting refers to operations of
arranging a set of data in a given
order.
10 20 30 40 50 60
30 10 60 20 50 40 Unsorted List
Sorted List
BASIC TYPES :
Internal Sorting:
If all the data to be sorted can be
adjusted in main memory then it is
called as Internal Sorting.
External Sorting:
If data to be stored is large and aquires
external memory then the type is called
as External Sorting.
METHODS OF SORTING:
Bubble Sort
Selection Sort
Insertion Sort
BUBBLE SORT
ALGORITHM
Bubble Sort:
Algorithm of bubble sort includes two steps
repeated until the list is sorted.
 Compare adjacent elements, if the
element on right side is smaller then
swap their positions.
 Compare first element, second element
and so on on completion of Pass 1 the
largest element is at last position.
Pass 1:
50 10 30 20 40
50 10 30 20 40
10 50 30 20 40
10 30 50 20 40
10 30 20 50 40
10 30 20 40 50
0,1
1,2
2,3
3,4
Number Of Passes = Max – 1 = 5 – 1 = 4
Pass 2:
10 30 20 40 50
10 30 20 40 50
10 30 20 40 50
10 30 20 40 50
0,1
1,2
2,3
Pass 3:
10 30 20 40 50
10 30 20 40 50
10 30 20 40 50
0,1
1,2
Pass 4:
10 30 20 40 50 0,1
10 30 20 40 50
10 30 20 40 50 Sorted list
To sort numbers in ascending order using bubble sort
technique
import java.util.*;
public class bubbleSort{
public static void main(String a[]) throws Exception
{
int i,j,n;
int a[] = {50,10,30,20,40};
System.out.println("Values Before the sort:n");
for(i = 0; i < a.length; i++)
System.out.print( a[i]+" ");
System.out.println();
n=a.length;
for(i = 1; i < n; i++)
{
for(j = 0; j < (n-i); j++)
{
if(a[j] > a[j+1]){
t = a[j];
a[j]=a[j+1];
a[j+1]=t;
}
}
}
System.out.print("Values after the sort:n");
for(i = 0; i <a.length; i++)
System.out.print(a[i]+" ");
} }
SELECTION SORT
ALGORITHM
Selection Sort:
Here in selection sort the algorithm depends on the
zeroth element majorly.
 The Zeroth element is compared with the first
element and if the element at right is found smaller
then their positions are swapped or exchanged.
 The same procedure is carried with all elements of
the list resulting into a fully sorted list.
23 15 29 11 1
23 15 29 11 1
Pass
1:
Number Of Passes = Max – 1 = 5 – 1 = 4
15 23 29 11 1
15 23 29 11 1
11 23 29 15 1
1 23 29 15 11
0,1
0,2
0,3
0,4
1 23 29 15 11
Pass 2:
1 29 23 15 11
1 15 23 29 11
1 11 23 29 15
1,2
1,3
1,4
1 11 23 29 15
Pass 3:
1 11 23 29 15
1 11 15 29 23
2,3
2,4
Pass 4:
1 11 15 29 23
1 11 15 23 29
1 11 15 23 29 Sorted List
3,4
To sort numbers in ascending order using selection
sort technique
import java.util.*;
public class selectionSort{
public static void main(String a[]) throws Exception
{
int i,j;
int a[] = {23,15,29,11,1};
System.out.println("Values Before the sort:n");
for(i = 0; i < a.length; i++)
System.out.print( a[i]+" ");
System.out.println();
n=a.length;
for(i = 0; i < n; i++)
{
for(j = i+1; j < n; j++)
{
if(a[i] > a[j]){
t = a[j];
a[j]=a[i];
a[i]=t;
}
}
}
System.out.print("Values after the sort:n");
for(i = 0; i <a.length; i++)
System.out.print(a[i]+" ");
}}
INSERTION SORT
Mathematical applications : in the search for
greater value, or the smallest value. In
many other applications.
This method is effective when dealing
with small numbers .
ALGORITHM
Insertion Sort
In insertion sort the elements are compared
and inserted to respective index place.
 It starts with comparision of 1st and 0th
element in pass 1.
 In pass 2 the second element is compared
with the 1st and 0th element.
 Doing so with all the elements in the list
appropriate element is inserted by shifting
elements on right.
public insertionSort( int [] a r r )
{
f or ( i n t i = 1; i < arr.Length; ++i)
{
i n t temp = a r r [ i ] ;
i n t pos = i ;
}
arr[pos] = temp;
}
}
Select
while (arr[pos-1].CompareTo(temp) > 0 &&pos > 0)
{
Comparing
arr[pos] = arr[pos-1];
pos--;
Shift
Insert
75 57 25 19 4
Pass 1:
75 57 25 19 4
Number Of Passes = Max – 1 = 5 – 1 = 4
57 75 25 19 4
0,1
Pass 2:
57 75 25 19 4
25 57 75 19 4
0,2
25 57 75 19 4
Pass 3:
19 25 57 75 4
0,3
4 19 25 57 75
Pass 4:
19 25 57 75 4 0,4
Thank You…!

sorting and its types

  • 1.
  • 2.
    SORTING Sorting refers tooperations of arranging a set of data in a given order. 10 20 30 40 50 60 30 10 60 20 50 40 Unsorted List Sorted List
  • 3.
    BASIC TYPES : InternalSorting: If all the data to be sorted can be adjusted in main memory then it is called as Internal Sorting. External Sorting: If data to be stored is large and aquires external memory then the type is called as External Sorting.
  • 4.
    METHODS OF SORTING: BubbleSort Selection Sort Insertion Sort
  • 5.
  • 6.
    ALGORITHM Bubble Sort: Algorithm ofbubble sort includes two steps repeated until the list is sorted.  Compare adjacent elements, if the element on right side is smaller then swap their positions.  Compare first element, second element and so on on completion of Pass 1 the largest element is at last position.
  • 7.
    Pass 1: 50 1030 20 40 50 10 30 20 40 10 50 30 20 40 10 30 50 20 40 10 30 20 50 40 10 30 20 40 50 0,1 1,2 2,3 3,4 Number Of Passes = Max – 1 = 5 – 1 = 4
  • 8.
    Pass 2: 10 3020 40 50 10 30 20 40 50 10 30 20 40 50 10 30 20 40 50 0,1 1,2 2,3
  • 9.
    Pass 3: 10 3020 40 50 10 30 20 40 50 10 30 20 40 50 0,1 1,2
  • 10.
    Pass 4: 10 3020 40 50 0,1 10 30 20 40 50 10 30 20 40 50 Sorted list
  • 11.
    To sort numbersin ascending order using bubble sort technique import java.util.*; public class bubbleSort{ public static void main(String a[]) throws Exception { int i,j,n; int a[] = {50,10,30,20,40}; System.out.println("Values Before the sort:n"); for(i = 0; i < a.length; i++) System.out.print( a[i]+" "); System.out.println(); n=a.length;
  • 12.
    for(i = 1;i < n; i++) { for(j = 0; j < (n-i); j++) { if(a[j] > a[j+1]){ t = a[j]; a[j]=a[j+1]; a[j+1]=t; } } } System.out.print("Values after the sort:n"); for(i = 0; i <a.length; i++) System.out.print(a[i]+" "); } }
  • 13.
  • 14.
    ALGORITHM Selection Sort: Here inselection sort the algorithm depends on the zeroth element majorly.  The Zeroth element is compared with the first element and if the element at right is found smaller then their positions are swapped or exchanged.  The same procedure is carried with all elements of the list resulting into a fully sorted list.
  • 15.
    23 15 2911 1 23 15 29 11 1 Pass 1: Number Of Passes = Max – 1 = 5 – 1 = 4 15 23 29 11 1 15 23 29 11 1 11 23 29 15 1 1 23 29 15 11 0,1 0,2 0,3 0,4
  • 16.
    1 23 2915 11 Pass 2: 1 29 23 15 11 1 15 23 29 11 1 11 23 29 15 1,2 1,3 1,4
  • 17.
    1 11 2329 15 Pass 3: 1 11 23 29 15 1 11 15 29 23 2,3 2,4
  • 18.
    Pass 4: 1 1115 29 23 1 11 15 23 29 1 11 15 23 29 Sorted List 3,4
  • 19.
    To sort numbersin ascending order using selection sort technique import java.util.*; public class selectionSort{ public static void main(String a[]) throws Exception { int i,j; int a[] = {23,15,29,11,1}; System.out.println("Values Before the sort:n"); for(i = 0; i < a.length; i++) System.out.print( a[i]+" "); System.out.println(); n=a.length;
  • 20.
    for(i = 0;i < n; i++) { for(j = i+1; j < n; j++) { if(a[i] > a[j]){ t = a[j]; a[j]=a[i]; a[i]=t; } } } System.out.print("Values after the sort:n"); for(i = 0; i <a.length; i++) System.out.print(a[i]+" "); }}
  • 21.
  • 22.
    Mathematical applications :in the search for greater value, or the smallest value. In many other applications. This method is effective when dealing with small numbers .
  • 23.
    ALGORITHM Insertion Sort In insertionsort the elements are compared and inserted to respective index place.  It starts with comparision of 1st and 0th element in pass 1.  In pass 2 the second element is compared with the 1st and 0th element.  Doing so with all the elements in the list appropriate element is inserted by shifting elements on right.
  • 24.
    public insertionSort( int[] a r r ) { f or ( i n t i = 1; i < arr.Length; ++i) { i n t temp = a r r [ i ] ; i n t pos = i ; } arr[pos] = temp; } } Select while (arr[pos-1].CompareTo(temp) > 0 &&pos > 0) { Comparing arr[pos] = arr[pos-1]; pos--; Shift Insert
  • 25.
    75 57 2519 4 Pass 1: 75 57 25 19 4 Number Of Passes = Max – 1 = 5 – 1 = 4 57 75 25 19 4 0,1
  • 26.
    Pass 2: 57 7525 19 4 25 57 75 19 4 0,2
  • 27.
    25 57 7519 4 Pass 3: 19 25 57 75 4 0,3
  • 28.
    4 19 2557 75 Pass 4: 19 25 57 75 4 0,4
  • 29.