The document provides an overview of using Markov chains and recurrent neural networks (RNNs) for text generation. It discusses:
- How Markov chains can model text by treating sequences of words as "states" and predicting the next word based on conditional probabilities.
- The limitations of Markov chains for complex text generation.
- How RNNs address some limitations by incorporating memory via feedback connections, allowing them to better capture sequential relationships.
- Long short-term memory (LSTM) networks, which help combat the "vanishing gradient problem" to better learn long-term dependencies in sequences.
- How LSTMs can be implemented in Python using Keras to generate text character-by-character based on